Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells. Acquired spectra from both the intracellular space and the reference solutions were treated to observe the aptamer localization and its interaction with biological structures inside the living cell. The emission spectra and the maximum emission wavelengths coming from the cells are practically identical, however significant lifetime lengthening was observed for tumor cell line in comparison to non-tumor one.
- MeSH
- aptamery nukleotidové metabolismus MeSH
- časové faktory MeSH
- fluorescenční mikroskopie metody MeSH
- fluorescenční spektrometrie metody MeSH
- intracelulární prostor genetika metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oligodeoxyribonukleotidy genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Drop-coating deposition Raman (DCDR) spectroscopy is based on the measurement of a sample that has been preconcentrated by being dried on a special hydrophobic plate. In addition to its higher sensitivity, the advantage of DCDR over the conventional Raman spectroscopy is the small sample volume needed, the lack of interference from solvents, and the capability of segregating any impurities present and separating components in more complex samples. In this study, DCDR spectroscopy was employed to investigate the complex of the cationic copper(II) 5,10,15,20-tetrakis(1-methyl-4-pyridyl) porphyrin (CuTMPyP) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes. Drop-coating deposition Raman spectra were treated using factor analysis (FA), which led to the following conclusions: (i) the distribution of CuTMPyP in the complex is not homogenous, (ii) the DCDR technique segregates complexed and noncomplexed parts of the sample, (iii) the spectral changes caused by the drying process and by the interaction of CuTMPyP with the DPPC liposomes can be distinguished, and (iv) the porphyrin molecules interacting with DPPC affect both the order-disorder properties of the lipid chains and the lipid head.
Drop coating deposition Raman (DCDR) spectroscopy was used to study liposomes (DPPC and asolectin) with growing proportion of cholesterol. Deposited samples of both liposomes on special hydrophobic surface formed a dried drop with a circular shape with a ring of concentrated liposomes at the outer edge. The presence of cholesterol in liposome causes a diminishing of the drop size and an increasing in diameter of the ring, but DPPC with 20% of cholesterol forms the compact drop without the ring. Raman spectra contain characteristics of both lipids and cholesterol, liposomes do not change their initial phase state after drying. Spectral mapping shows that maximum Raman intensity originated from the inner part of the ring. Our results suggest that DCDR spectroscopy can be used for studying lipids containing cholesterol in situ.
Cationic 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin was tested as a delivery agent for oligonucleotides. By using fluorescence microimaging, it has been shown that complexation of the porphyrin to the phosphorothioate analog of dT(15) labeled by rhodamine enabled its nonendocytic penetration into the cell and regular distribution in the cytoplasm and preferentially into the nucleus. Time-resolved microfluorescence spectroscopy revealed that the oligonucleotide integrity was kept. A small fraction of the porphyrin molecules seems to undergo change of the binding mode after internalization, probably due to duplex formation between the oligonucleotide and its cellular target sequences, or due to dissociation of the porphyrin from the oligonucleotide and subsequent interactions in the cellular environment. (c) 2006 Wiley Periodicals, Inc.
- MeSH
- amfotericin B farmakologie MeSH
- buněčná membrána metabolismus MeSH
- buněčné jádro metabolismus MeSH
- cytoplazma metabolismus MeSH
- finanční podpora výzkumu jako téma MeSH
- fluorescenční spektrometrie metody MeSH
- kationty MeSH
- myši MeSH
- oligonukleotidy farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH