Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.
- MeSH
- Acetylcholine pharmacology MeSH
- Arginase metabolism MeSH
- Cell Line MeSH
- Endothelium, Vascular metabolism MeSH
- Down-Regulation MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Phosphorylation MeSH
- Hyperuricemia metabolism MeSH
- Uric Acid blood chemistry metabolism MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Coronary Artery Disease metabolism MeSH
- Nitric Oxide biosynthesis metabolism MeSH
- Reactive Oxygen Species chemistry metabolism MeSH
- Superoxides metabolism MeSH
- Nitric Oxide Synthase Type III metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The release of myeloperoxidase (MPO) from polymorphonuclear neutrophils is a hallmark of vascular inflammation and contributes to the pathogenesis of vascular inflammatory processes. However, the effects of MPO on platelets as a contributory mechanism in vascular inflammatory diseases remain unknown. Thus, MPO interaction with platelets and its effects on platelet function were examined. First, dose-dependent binding of MPO (between 1.7 and 13.8nM) to both human and mouse platelets was observed. This was in direct contrast to the absence of MPO in megakaryocytes. MPO was localized both on the surface of and inside platelets. Cytoskeleton inhibition did not prevent MPO localization inside the three-dimensional platelet structure. MPO peroxidase activity was preserved upon the MPO binding to platelets. MPO sequestered in platelets catabolized NO, documented by the decreased production of NO (on average, an approximately 2-fold decrease). MPO treatment did not affect the viability of platelets during short incubations; however, it decreased platelet viability after long-term storage for 7 days (an approximately 2-fold decrease). The activation of platelets by MPO was documented by an MPO-mediated increase in the expression of surface platelet receptors P-selectin and PECAM-1 (of about 5 to 20%) and the increased formation of reactive oxygen species (of about 15 to 200%). However, the activation was only partial, as MPO did not induce the aggregation of platelets nor potentiate platelet response to classical activators. Nor did MPO induce a significant release of the content of granules. The activation of platelets by MPO was connected with increased MPO-treated platelet interaction with polymorphonuclear leukocytes (an approximately 1.2-fold increase) in vitro. In conclusion, it can be suggested that MPO can interact with and activate platelets, which can induce priming of platelets, rather than the classical robust activation of platelets. This can contribute to the development of chronic inflammatory processes in vessels.
- MeSH
- Platelet Aggregation drug effects MeSH
- Platelet Activation drug effects MeSH
- Humans MeSH
- Cell Communication drug effects MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Nitric Oxide physiology MeSH
- Peroxidase pharmacology MeSH
- Blood Platelets drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH