The seventh multi-stakeholder Paediatric Strategy Forum focused on chimeric antigen receptor (CAR) T-cells for children and adolescents with cancer. The development of CAR T-cells for patients with haematological malignancies, especially B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), has been spectacular. However, currently, there are scientific, clinical and logistical challenges for use of CAR T-cells in BCP-ALL and other paediatric malignancies, particularly in acute myeloid leukaemia (AML), lymphomas and solid tumours. The aims of the Forum were to summarise the current landscape of CAR T-cell therapy development in paediatrics, too identify current challenges and future directions, with consideration of other immune effector modalities and ascertain the best strategies to accelerate their development and availability to children. Although the effect is of limited duration in about half of the patients, anti-CD19 CAR T-cells produce high response rates in relapsed/refractory BCP-ALL and this has highlighted previously unknown mechanisms of relapse. CAR T-cell treatment as first- or second-line therapy could also potentially benefit patients whose disease has high-risk features associated with relapse and failure of conventional therapies. Identifying patients with very early and early relapse in whom CAR T-cell therapy may replace haematopoietic stem cell transplantation and be definitive therapy versus those in whom it provides a more effective bridge to haematopoietic stem cell transplantation is a very high priority. Development of approaches to improve persistence, either by improving T cell fitness or using more humanised/fully humanised products and co-targeting of multiple antigens to prevent antigen escape, could potentially further optimise therapy. Many differences exist between paediatric B-cell non-Hodgkin lymphomas (B-NHL) and BCP-ALL. In view of the very small patient numbers with relapsed lymphoma, careful prioritisation is needed to evaluate CAR T-cells in children with Burkitt lymphoma, primary mediastinal B cell lymphoma and other NHL subtypes. Combination trials of alternative targets to CD19 (CD20 or CD22) should also be explored as a priority to improve efficacy in this population. Development of CD30 CAR T-cell immunotherapy strategies in patients with relapsed/refractory Hodgkin lymphoma will likely be most efficiently accomplished by joint paediatric and adult trials. CAR T-cell approaches are early in development for AML and T-ALL, given the unique challenges of successful immunotherapy actualisation in these diseases. At this time, CD33 and CD123 appear to be the most universal targets in AML and CD7 in T-ALL. The results of ongoing or planned first-in-human studies are required to facilitate further understanding. There are promising early results in solid tumours, particularly with GD2 targeting cell therapies in neuroblastoma and central nervous system gliomas that represent significant unmet clinical needs. Further understanding of biology is critical to success. The comparative benefits of autologous versus allogeneic CAR T-cells, T-cells engineered with T cell receptors T-cells engineered with T cell receptor fusion constructs, CAR Natural Killer (NK)-cell products, bispecific T-cell engager antibodies and antibody-drug conjugates require evaluation in paediatric malignancies. Early and proactive academia and multi-company engagement are mandatory to advance cellular immunotherapies in paediatric oncology. Regulatory advice should be sought very early in the design and preparation of clinical trials of innovative medicines, for which regulatory approval may ultimately be sought. Aligning strategic, scientific, regulatory, health technology and funding requirements from the inception of a clinical trial is especially important as these are very expensive therapies. The model for drug development for cell therapy in paediatric oncology could also involve a 'later stage handoff' to industry after early development in academic hands. Finally, and very importantly, strategies must evolve to ensure appropriate ease of access for children who need and could potentially benefit from these therapies.
- MeSH
- chimerické antigenní receptory genetika MeSH
- dítě MeSH
- lékařská onkologie organizace a řízení MeSH
- lidé MeSH
- mladiství MeSH
- pediatrie MeSH
- receptory antigenů T-buněk genetika MeSH
- Úřad Spojených států pro potraviny a léky MeSH
- vyvíjení léků organizace a řízení MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
- Spojené státy americké MeSH
The randomized phase III ELOQUENT-2 study (NCT01239797) evaluated the efficacy and safety of elotuzumab + lenalidomide/dexamethasone (ELd) versus lenalidomide/dexamethasone (Ld) in relapsed/refractory multiple myeloma. ELd reduced the risk of disease progression/death by 30% versus Ld (hazard ratio [HR] 0·70). Median time from diagnosis was 3·5 years. We present extended 3-year follow-up data. Endpoints included progression-free survival (PFS), overall response rate (ORR) and interim overall survival (OS). Exploratory post-hoc analyses included impact of time from diagnosis and prior lines of therapy on PFS, and serum M-protein dynamic modelling. ORR was 79% (ELd) and 66% (Ld) (P = 0·0002). ELd reduced the risk of disease progression/death by 27% versus Ld (HR 0·73; P = 0·0014). Interim OS demonstrated a trend in favour of ELd (P = 0·0257); 1-, 2- and 3-year rates with ELd versus Ld were: 91% versus 83%, 73% versus 69% and 60% versus 53%. In patients with ≥ median time from diagnosis and one prior therapy, ELd resulted in a 53% reduction in the risk of progression/death versus Ld (HR 0·47). Serum M-protein dynamic modelling showed slower tumour regrowth with ELd. Adverse events were comparable between arms. ELd provided a durable and clinically relevant improvement in efficacy, with minimal incremental toxicity.
- MeSH
- dexamethason aplikace a dávkování škodlivé účinky MeSH
- humanizované monoklonální protilátky aplikace a dávkování škodlivé účinky MeSH
- imunoglobuliny krev MeSH
- Kaplanův-Meierův odhad MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom farmakoterapie patologie MeSH
- následné studie MeSH
- protokoly antitumorózní kombinované chemoterapie škodlivé účinky terapeutické užití MeSH
- recidiva MeSH
- senioři MeSH
- thalidomid aplikace a dávkování škodlivé účinky analogy a deriváty MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
BACKGROUND: Elotuzumab, an immunostimulatory monoclonal antibody targeting signaling lymphocytic activation molecule F7 (SLAMF7), showed activity in combination with lenalidomide and dexamethasone in a phase 1b-2 study in patients with relapsed or refractory multiple myeloma. METHODS: In this phase 3 study, we randomly assigned patients to receive either elotuzumab plus lenalidomide and dexamethasone (elotuzumab group) or lenalidomide and dexamethasone alone (control group). Coprimary end points were progression-free survival and the overall response rate. Final results for the coprimary end points are reported on the basis of a planned interim analysis of progression-free survival. RESULTS: Overall, 321 patients were assigned to the elotuzumab group and 325 to the control group. After a median follow-up of 24.5 months, the rate of progression-free survival at 1 year in the elotuzumab group was 68%, as compared with 57% in the control group; at 2 years, the rates were 41% and 27%, respectively. Median progression-free survival in the elotuzumab group was 19.4 months, versus 14.9 months in the control group (hazard ratio for progression or death in the elotuzumab group, 0.70; 95% confidence interval, 0.57 to 0.85; P<0.001). The overall response rate in the elotuzumab group was 79%, versus 66% in the control group (P<0.001). Common grade 3 or 4 adverse events in the two groups were lymphocytopenia, neutropenia, fatigue, and pneumonia. Infusion reactions occurred in 33 patients (10%) in the elotuzumab group and were grade 1 or 2 in 29 patients. CONCLUSIONS: Patients with relapsed or refractory multiple myeloma who received a combination of elotuzumab, lenalidomide, and dexamethasone had a significant relative reduction of 30% in the risk of disease progression or death. (Funded by Bristol-Myers Squibb and AbbVie Biotherapeutics; ELOQUENT-2 ClinicalTrials.gov number, NCT01239797.).
- MeSH
- dexamethason terapeutické užití MeSH
- dospělí MeSH
- humanizované monoklonální protilátky škodlivé účinky terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom farmakoterapie mortalita MeSH
- přežití po terapii bez příznaků nemoci MeSH
- protokoly antitumorózní kombinované chemoterapie škodlivé účinky terapeutické užití MeSH
- receptory imunologické antagonisté a inhibitory MeSH
- recidiva MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- thalidomid analogy a deriváty terapeutické užití MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH