BACKGROUND: Disturbances in the intestinal microbial community (i.e. dysbiosis) or presence of the microbes with deleterious effects on colonic mucosa has been linked to the pathogenesis of inflammatory bowel diseases. However the role of microbiota in induction and progression of ulcerative colitis (UC) has not yet been fully elucidated. METHODS: Three lines of human microbiota-associated (HMA) mice were established by gavage of colon biopsy from three patients with active UC. The shift in microbial community during its transferring from humans to mice was analyzed by next-generation sequencing using Illumina MiSeq sequencer. Spontaneous or dextran sulfate sodium (DSS)-induced colitis and microbiota composition profiling in germ-free mice and HMA mice over 3-4 generations were assessed to decipher the features of the distinctive and crucial events occurring during microbial colonization and animal reproduction. RESULTS: None of the HMA mice developed colitis spontaneously. When treated with DSS, mice in F4 generation of one line of colonized mice (aHMA) developed colitis. Compared to the DSS-resistant earlier generations of aHMA mice, the F4 generation have increased abundance of Clostridium difficile and decrease abundance of C. symbiosum in their cecum contents measured by denaturing gradient gel electrophoresis and DNA sequencing. CONCLUSION: In our study, mucosa-associated microbes of UC patients were not able to induce spontaneous colitis in gnotobiotic BALB/c mice but they were able to increase the susceptibility to DSS-induced colitis, once the potentially deleterious microbes found a suitable niche.
- Publication type
- Journal Article MeSH
One of the promising approaches in the therapy of ulcerative colitis is administration of butyrate, an energy source for colonocytes, into the lumen of the colon. This study investigates the effect of butyrate producing bacterium Clostridium tyrobutyricum on dextran sodium sulphate (DSS)-induced colitis in mice. Immunocompetent BALB/c and immunodeficient severe combined immunodeficiency (SCID) mice reared in specific-pathogen-free (SPF) conditions were treated intrarectally with C. tyrobutyricum 1 week prior to the induction of DSS colitis and during oral DSS treatment. Administration of DSS without C. tyrobutyricum treatment led to an appearance of clinical symptoms - bleeding, rectal prolapses and colitis-induced increase in the antigen CD11b, a marker of infiltrating inflammatory cells in the lamina propria. The severity of colitis was similar in BALB/c and SCID mice as judged by the histological damage score and colon shortening after 7 days of DSS treatment. Both strains of mice also showed a similar reduction in tight junction (TJ) protein zonula occludens (ZO)-1 expression and of MUC-2 mucin depression. Highly elevated levels of cytokine tumour necrosis factor (TNF)-α in the colon of SCID mice and of interleukin (IL)-18 in BALB/c mice were observed. Intrarectal administration of C. tyrobutyricum prevented appearance of clinical symptoms of DSS-colitis, restored normal MUC-2 production, unaltered expression of TJ protein ZO-1 and decreased levels of TNF-α and IL-18 in the descending colon of SCID and BALB/c mice, respectively. Some of these features can be ascribed to the increased production of butyrate in the lumen of the colon and its role in protection of barrier functions and regulation of IL-18 expression.
- MeSH
- Acute Disease MeSH
- CD11b Antigen biosynthesis genetics MeSH
- Administration, Rectal MeSH
- Bacterial Translocation MeSH
- Butyrates metabolism MeSH
- Clostridium tyrobutyricum physiology MeSH
- Phosphoproteins biosynthesis genetics MeSH
- Immunocompetence MeSH
- Interleukin-18 biosynthesis genetics MeSH
- Colon metabolism microbiology pathology MeSH
- Fatty Acids metabolism MeSH
- Membrane Proteins biosynthesis genetics MeSH
- Mucin-2 biosynthesis genetics MeSH
- Mucins biosynthesis MeSH
- Mice, Inbred BALB C MeSH
- Mice, SCID MeSH
- Mice MeSH
- Specific Pathogen-Free Organisms MeSH
- Probiotics therapeutic use MeSH
- Dextran Sulfate toxicity MeSH
- Severe Combined Immunodeficiency genetics immunology MeSH
- Tumor Necrosis Factor-alpha biosynthesis genetics MeSH
- Colitis, Ulcerative chemically induced genetics immunology microbiology pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH