The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vajíčkovod, ako súčasť vnútorných pohlavných orgánov ženy, je jediným trubicovým orgánom ľudského tela, ktorý aj za fyziologických podmienok vykonáva transportnú funkciu v oboch smeroch. Smerom do dutiny maternice posúva oocyt uvoľnený počas ovulácie, resp. rané embryo; smerom k abdominálnemu ústiu transportuje spermie. Vajíčkovod má však mnoho ďalších unikátnych funkcií, ako napríklad selekciu spermií, ako jeden z mechanizmov zabránenia polyspermatického oplodnenia, či tvorbu unikátnej tubárnej tekutiny, ktorá je dôležitá nie len pri samotnom oplodnení, ale pred oplodnením aktivuje spermie a vyživuje embryo počas transportu do dutiny maternice. V prvej časti nášho prehľadu literatúry prinášame pohľad do histórie. V rámci neho chceme čitateľom priblížiť, ako vajíčkovody vnímali slávni anatómovia 16. a 17. storočia Gabriele Falloppio a Reiner de Graaf. Nasleduje prehľad aktuálnych anatomických, embryologických a histologických poznatkov, ktoré sú dôležité aj pre lepšie porozumenie patologickým stavom postihujúcich vajíčkovod, ako tubárna infertilita alebo tubárna gravidita. Práve v rámci morfológie vajíčkovodu boli ostatné roky potvrdené tak zásadné objavy, ako jedinečný mechanizmus prúdenia lymfy v sliznici vajíčkovodu, prítomnosť imunologicky aktívnych supresorových T-lymfocytov v rámci epitelu vajíčkovodu, či novoobjavená populácia buniek – telocytov – s pacemakerovou aktivitou v rámci svaloviny.
The uterine tube, belonging to the female internal reproductive organs, is the only tubular organ in the human body that has, under physiological conditions, a transport function occurring in two opposite directions. It transports the picked-up oocyte released during ovulation and early embryo towards the uterine cavity. At the same time, it can transport spermatozoa towards the abdominal opening of the fallopian tube. Moreover, the uterine tube has many other vital functions as sperm selection (one of the crucial factors preventing polyspermy) and the production of tubal fluid. This unique secretion is essential not only for the process of fertilization but also for sperm activation and the nourishment of the early embryo during its transport into the uterine cavity. The first part of our review is focused on the historical introduction to the topic in which the reader will become familiar with the views and understanding of these peculiar organs by famous anatomists of the 16th and 17th centuries, namely Gabriele Falloppio and Renier de Graaf. The following section will cover the overview of the latest anatomical, embryological, and histological knowledge, which are also crucial for a better understanding of pathological processes affecting the fallopian tube, such as tubal infertility or tubal pregnancy. Interestingly, recent years have been very fruitful regarding uterine tube morphology, e. g. the discovery of an unique mechanism of lymphatic flow within the uterine tube mucosa, the first description of immunologically-active intraepithelial suppressor T-lymphocytes, or the observation of pacemaker cell population – telocytes – in the muscle layer.
- MeSH
- lidé MeSH
- vejcovody * anatomie a histologie fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- přehledy MeSH
The uterine tube (UT) pathologies account for 25-35% of female factor infertility. Although these peculiar organs were first studied several hundred years ago, they have become overlooked and neglected mainly due to the successes of reproductive medicine. Nevertheless, the reproductive medicine still faces many challenges regarding the fertility outcomes of in vitro fertilization (IVF). Many obstacles and problems can be resolved by a more detailed understanding of the UT morphology and function during normal reproduction. Over the course of the 21st century, many new insights have been obtained: the presence of a population of telocytes in the tubal wall responsible for normal motility and hormone sensory function, the demonstration of lymphatic lacunae of the mucosal folds necessary for oocyte capture and tubal fluid recirculation, or a thorough profiling of the immune makeup of the UT epithelial lining with the discovery of regulatory T cells presumably important for maternal tolerance towards the semi-allogenic embryo. New discoveries also include the notion that the UT epithelium is male sex hormone-sensitive, and that the UT is not sterile, but harbors a complex microbiome. The UT epithelial cells were also shown to be the cells-of-origin of high-grade serous ovarian carcinomas. Finally, yet importantly, several modern morphological directions have been emerging recently, including cell culture, development of tubal organoids, in silico modelling, tissue engineering and regenerative medicine. All these novel insights and new approaches can contribute to better clinical practice and successful pregnancy outcomes.
- MeSH
- epitel MeSH
- fertilita * MeSH
- fertilizace in vitro MeSH
- lidé MeSH
- ovarium MeSH
- těhotenství MeSH
- vejcovody * patologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Uterine tubes (UTs) are essential during physiological reproduction. The most intriguing part of its wall is the mucosa. Apart from the epithelial cells vital for its normal function, the connective tissue lamina propria contains wide spaces whose function, morphology and structure are yet to be elucidated. The present study used bioptic samples from 25 premenopausal (mean age 48,33 years, ?=3,56) and 25 postmenopausal women (mean age 57,8 years, ?=7,79). In both study groups, samples were obtained from two anatomically distinct parts of the UT - ampulla and infundibulum with fimbriae. The specimens were processed for scanning electron microscopy (SEM) and immunohistochemical detection of podoplanin (clone D2-40) and VEGFR-3 - two markers of lymphatic endothelial cells. The results showed that specimens from premenopausal and postmenopausal women contain wide lymphatic spaces, also known as lymphatic lacunae. The most probable function of the lacunae in the fimbriae is oocyte pick-up upon ovulation thanks to their ability to get engorged with lymph, thus serving as an erectile-like tissue. The ampullary lacunae are probably responsible for tubal fluid maintenance and recirculation. These results indicate that they are vital for normal reproduction because tubal fluid dynamics are as important as fluid composition. Further research on this topic is highly warranted because more detailed insights into UT function have a great potential to refine the methods of reproductive medicine, e.g. in vitro fertilization (IVF), which are still far from optimal regarding fertility outcomes.
- MeSH
- elektrony MeSH
- endoteliální buňky * MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- sliznice MeSH
- vejcovody * fyziologie ultrastruktura MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Anatomical variations and congenital anomalies of the uterine tubes (UTAVsCAs) are rare conditions, which are often undiagnosed, or accidentally diagnosed upon imaging, laparotomy, laparoscopy for unrelated condition, or during the Cesarean section. UTAVsCAs are often asymptomatic, but their clinical relevance lies in their possibly adverse impact on fertility. Since their rare occurrence, they are usually published as case reports. The most typically described are: agenesis of the uterine tubes (UTs), accessory UT (UT duplication), accessory UT ostium, and paratubal cysts (e.g. the hydatid cyst of Morgagni). UTAVsCAs are classified into an umbrella category of Müllerian duct anomalies (MDAs) which comprises anomalous development of all the organs developing from the paramesonephric (Müllerian) ducts, i.e., UTs, uterus and upper portion of the vagina. Interestingly, most of the classification systems of MDAs discuss solely the uterine and vaginal anomalies, while the UTs are often utterly ignored. This probably originates from the fact that UTs are no longer interesting for many clinicians as they think of UTs as superfluous organs whose function can be easily replaced in the in vitro fertilization (IVF) laboratory. Indeed, the modern reproductive medicine has been helping enormously with the conception of infertile couples. In many instances, the UTs are in fact successfully bypassed and a "test-tube" baby is born. Nevertheless, the UTs are still absolutely unique in providing suitable environment for fertilization and early embryo development - processes that hasn ́t been still completely understood. This fact could partially explain why the success rate of IVF is "only" around 30-50 % depending on age. Therefore, the research of the UTAVsCAs is still clinically relevant in the context of reproductive medicine and should not be omitted from research endeavors.
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
- MeSH
- epitel MeSH
- fertilizace fyziologie MeSH
- lidé MeSH
- oocyty MeSH
- rozmnožování * MeSH
- savci MeSH
- spermie fyziologie MeSH
- vejcovody * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH