Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.
- MeSH
- biologická evoluce MeSH
- fenotyp MeSH
- genetický drift MeSH
- molekulární evoluce MeSH
- Pipidae genetika fyziologie MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví MeSH
- rekombinace genetická MeSH
- selekce (genetika) MeSH
- sexuální diferenciace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.
- MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- pigmentace * MeSH
- pohlavní dimorfismus MeSH
- žáby klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Afrika MeSH
A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.
- MeSH
- anatomické modely MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- genomika metody MeSH
- konzervovaná sekvence MeSH
- molekulární evoluce MeSH
- rentgenová mikrotomografie MeSH
- taxonomické DNA čárové kódování MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Xenopus anatomie a histologie klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.
- MeSH
- anatomické struktury zvířat anatomie a histologie fyziologie MeSH
- časové faktory MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- geny mos MeSH
- geny RAG-1 MeSH
- mitochondriální geny MeSH
- molekulární evoluce MeSH
- NADH-dehydrogenasa genetika MeSH
- predátorské chování MeSH
- RNA ribozomální 16S genetika MeSH
- Viperidae klasifikace genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Members of the snake subfamily Aparallactinae occur in various habitats throughout sub-Saharan Africa. The monophyly of aparallactine snakes is well established, but relationships within the subfamily are poorly known. We sampled 158 individuals from six of eight aparallactine genera in sub-Saharan Africa. We employed concatenated gene-tree analyses, divergence dating approaches, and ancestral-area reconstructions to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). As a result, we uncover several cryptic lineages and elevate a lineage of Polemon to full species status. Diversification occurred predominantly during the Miocene, with a few speciation events occurring subsequently in the Pliocene and Pleistocene. Biogeographic analyses suggested that the Zambezian biogeographic region, comprising grasslands and woodlands, facilitated radiations, vicariance, and dispersal for many aparallactines. Moreover, the geographic distributions of many forest species were fragmented during xeric and cooler conditions, which likely led to diversification events. Biogeographic patterns of aparallactine snakes are consistent with previous studies of other sub-Saharan herpetofauna.
- MeSH
- fylogeneze * MeSH
- fylogeografie * MeSH
- hadi anatomie a histologie genetika MeSH
- ještěři anatomie a histologie klasifikace genetika MeSH
- mitochondriální DNA genetika MeSH
- pouštní klima * MeSH
- pravděpodobnostní funkce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- subsaharská Afrika MeSH
The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.
- MeSH
- analýza hlavních komponent MeSH
- Bayesova věta MeSH
- cytochromy b klasifikace genetika metabolismus MeSH
- DNA chemie izolace a purifikace metabolismus MeSH
- ekologie MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- haplotypy MeSH
- homeodoménové proteiny klasifikace genetika metabolismus MeSH
- Ranidae klasifikace genetika MeSH
- RNA ribozomální 16S klasifikace genetika metabolismus MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Afrika MeSH
- Madagaskar MeSH
Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co-distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo-Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species-specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo-Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.
- MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- buněčné jádro genetika MeSH
- fenotyp MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- klimatické změny * MeSH
- lesy * MeSH
- mitochondriální DNA genetika MeSH
- ostrovy MeSH
- žáby klasifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Guinea MeSH
- ostrovy MeSH
- střední Afrika MeSH
African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups).
- MeSH
- biologická evoluce MeSH
- fenotyp MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- haplotypy MeSH
- hybridizace genetická MeSH
- karyotyp MeSH
- mitochondriální DNA MeSH
- polyploidie * MeSH
- taxonomické DNA čárové kódování MeSH
- Xenopus anatomie a histologie klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- střední Afrika MeSH
- západní Afrika MeSH