BACKGROUND: According to the biodiversity hypothesis of immune-mediated diseases, lack of microbiological diversity in the everyday living environment is a core reason for dysregulation of immune tolerance and - eventually - the epidemic of immune-mediated diseases in western urban populations. Despite years of intense research, the hypothesis was never tested in a double-blinded and placebo-controlled intervention trial. OBJECTIVE: We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance. METHODS: In the intervention group, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells. RESULTS: Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02). CONCLUSIONS: This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.
- MeSH
- Bacteria genetika MeSH
- biodiverzita MeSH
- cytokiny MeSH
- dvojitá slepá metoda MeSH
- interleukin-10 * MeSH
- interleukin-17 * MeSH
- lidé MeSH
- písek MeSH
- předškolní dítě MeSH
- regulační T-lymfocyty MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
According to the hygiene and biodiversity hypotheses, increased hygiene levels and reduced contact with biodiversity can partially explain the high prevalence of immune-mediated diseases in developed countries. A disturbed commensal microbiota, especially in the gut, has been linked to multiple immune-mediated diseases. Previous studies imply that gut microbiota composition is associated with the everyday living environment and can be modified by increasing direct physical exposure to biodiverse materials. In this pilot study, the effects of rural-second-home tourism were investigated on the gut microbiota for the first time. Rural-second-home tourism, a popular form of outdoor recreation in Northern Europe, North America, and Russia, has the potential to alter the human microbiota by increasing exposure to nature and environmental microbes. The hypotheses were that the use of rural second homes is associated with differences in the gut microbiota and that the microbiota related to health benefits are more diverse or common among the rural-second-home users. Based on 16S rRNA Illumina MiSeq sequencing of stool samples from 10 urban elderly having access and 15 lacking access to a rural second home, the first hypothesis was supported: the use of rural second homes was found to be associated with lower gut microbiota diversity and RIG-I-like receptor signaling pathway levels. The second hypothesis was not supported: health-related microbiota were not more diverse or common among the second-home users. The current study encourages further research on the possible health outcomes or causes of the observed microbiological differences. Activities and diet during second-home visits, standard of equipment, surrounding environment, and length of the visits are all postulated to play a role in determining the effects of rural-second-home tourism on the gut microbiota.
- MeSH
- lidé MeSH
- mikrobiota * MeSH
- pilotní projekty MeSH
- RNA ribozomální 16S genetika MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Finsko MeSH
- Rusko MeSH
- Severní Amerika MeSH