INTRODUCTION: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. METHODS: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). RESULTS: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. CONCLUSION: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
- MeSH
- chlorid sodný MeSH
- edém MeSH
- imunita MeSH
- infekce vyvolané poxviry * MeSH
- kapři * MeSH
- nemoci ryb * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genomic selection (GS) is increasingly applied in breeding programs of major aquaculture species, enabling improved prediction accuracy and genetic gain compared to pedigree-based approaches. Koi Herpesvirus disease (KHVD) is notifiable by the World Organization for Animal Health and the European Union, causing major economic losses to carp production. GS has potential to breed carp with improved resistance to KHVD, thereby contributing to disease control. In the current study, Restriction-site Associated DNA sequencing (RAD-seq) was applied on a population of 1,425 common carp juveniles which had been challenged with Koi herpes virus, followed by sampling of survivors and mortalities. GS was tested on a wide range of scenarios by varying both SNP densities and the genetic relationships between training and validation sets. The accuracy of correctly identifying KHVD resistant animals using GS was between 8 and 18% higher than pedigree best linear unbiased predictor (pBLUP) depending on the tested scenario. Furthermore, minor decreases in prediction accuracy were observed with decreased SNP density. However, the genetic relationship between the training and validation sets was a key factor in the efficacy of genomic prediction of KHVD resistance in carp, with substantially lower prediction accuracy when the relationships between the training and validation sets did not contain close relatives.
- Publikační typ
- časopisecké články MeSH
Tench (Tinca tinca L.) has great economic potential due to its high rate of fecundity and long-life span. Population genetic studies based on allozymes, microsatellites, PCR-RFLP and sequence analysis of genes and DNA fragments have revealed the presence of Eastern and Western phylogroups. However, the lack of genomic resources for this species has complicated the development of genetic markers. In this study, the tench transcriptome and genome were sequenced by high-throughput sequencing. A total of 60,414 putative SNPs were identified in the tench transcriptome using a computational pipeline. A set of 96 SNPs was selected for validation and a total of 92 SNPs was validated, resulting in the highest conversion and validation rate for a non-model species obtained to date (95.83%). The validated SNPs were used to genotype 140 individuals belonging to two tench breeds (Tabor and Hungarian), showing low (FST = 0.0450) but significant (<0.0001) genetic differentiation between the two tench breeds. This implies that set of validated SNPs array can be used to distinguish the tench breeds and that it might be useful for studying a range of associations between DNA sequence and traits of importance. These genomic resources created for the tench will provide insight into population genetics, conservation fish stock management, and aquaculture.
- MeSH
- chov MeSH
- Cyprinidae klasifikace genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genetické markery MeSH
- genom MeSH
- genová ontologie MeSH
- jednonukleotidový polymorfismus MeSH
- populační genetika MeSH
- rybářství MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Carp from breeding strains with different genetic background present diverse levels of resistance to viral pathogens. Carp strains of Asian origin, currently being treated as Cyprinus rubrofuscus L., especially Amur wild carp (AS), were proven to be more resistant to koi herpesvirus disease (KHVD; caused by cyprinid herpesvirus 3, CyHV-3) than strains originating from Europe and belonging to Cyprinus carpio L., like the Prerov scale carp (PS) or koi carp from a breed in the Czech Republic. We hypothesised that it can be associated with a higher magnitude of type I interferon (IFN) response as a first line of innate defence mechanisms against viral infections. To evaluate this hypothesis, four strains of common carp (AS, Rop, PS and koi) were challenged using two viral infection models: Rhabdovirus SVCV (spring viremia of carp virus) and alloherpesvirus CyHV-3. The infection with SVCV induced a low mortality rates and the most resistant was the Rop strain (no mortalities), whereas the PS strain was the most susceptible (survival rate of 78%). During CyHV-3 infection, Rop and AS strains performed better (survival rates of 78% and 53%, respectively) than PS and koi strains (survival rates of 35% and 10%, respectively). The evaluation of virus loads and virus replication showed significant differences between the carp strains, which correlated with the mortality rate. The evaluation of type I IFN responses showed that there were fundamental differences between the virus infection models. While responses to the SVCV were high, the CyHV-3 generally induced low responses. Furthermore, the results demonstrated that the magnitude of type I IFN responses did not correlate with a higher resistance in infected carp. In the case of a CyHV-3 infection, reduced type I IFN responses could be related to the potential ability of the virus to interfere with cellular sensing of foreign nucleic acids. Taken together, the results broaden our understanding of how common carp from different genetic strains interact with various viral pathogens.
- MeSH
- Herpesviridae fyziologie MeSH
- herpetické infekce imunologie veterinární MeSH
- infekce viry z čeledi Rhabdoviridae imunologie veterinární MeSH
- interferon typ I genetika imunologie MeSH
- kapři genetika imunologie MeSH
- nemoci ryb imunologie MeSH
- odolnost vůči nemocem genetika MeSH
- Rhabdoviridae fyziologie MeSH
- rybí proteiny genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cyprinids are the most highly produced group of fishes globally, with common carp being one of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high levels of mortality, causing major economic losses, and is listed as a notifiable disease by the World Organization for Animal Health. Selective breeding for host resistance has the potential to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host resistance and methods of incorporating genomic data into breeding for resistance may contribute to a decrease in economic losses in carp farming. In the current study, a population of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide association analyses were performed to investigate the genetic architecture of resistance to KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage group 44, explaining approximately 7% of the additive genetic variance. Pooled whole genome resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed to characterize QTL regions, including identification of putative candidate genes and functional annotation of associated polymorphisms. The TRIM25 gene was identified as a promising positional and functional candidate within the QTL region of LG 44, and a putative premature stop mutation in this gene was discovered.
- MeSH
- celogenomová asociační studie MeSH
- Herpesviridae MeSH
- herpetické infekce genetika veterinární MeSH
- jednonukleotidový polymorfismus MeSH
- kapři genetika MeSH
- lokus kvantitativního znaku MeSH
- nemoci ryb genetika MeSH
- odolnost vůči nemocem genetika MeSH
- rybí proteiny genetika MeSH
- TRIM protein genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Koi sleepy disease (KSD) is a disease with increasing importance in global common carp aquaculture. Despite the fact that carp edema virus (CEV) is most likely the causative agent of KSD, the disease often presents itself as multifactorial with several parasites and bacteria species present on gills, skin or in internal organs. Therefore, in this study, we analysed and presented initial results on an interaction of flavobacteria and CEV in the development of clinical KSD in carp suffering from proliferative gill disease. We examined selected field samples from Germany and Hungary and confirmed the presence of CEV and flavobacteria co-infections in subset of the samples. In several infection experiments, we studied the transfer and dynamics of both infections. Furthermore, we analysed which Flavobacterium species could be isolated from KSD-affected fish and concluded that Flavobacterium branchiophilum is a possible copathogen. Antibiotic treatment experiments showed that CEV seems to be the primary pathogen causing an insult to the gills of carp and by these enabling other pathogens, including F. branchiophilum, to establish co-infections. Despite the fact that F. branchiophilum co-infection is not required for the development of clinical KSD, it could contribute to the pathological changes recorded during the outbreaks.
- MeSH
- Flavobacterium fyziologie MeSH
- infekce bakteriemi čeledi Flavobacteriaceae farmakoterapie mikrobiologie veterinární MeSH
- infekce vyvolané poxviry farmakoterapie mikrobiologie veterinární MeSH
- kapři * MeSH
- koinfekce farmakoterapie mikrobiologie veterinární virologie MeSH
- nemoci ryb farmakoterapie mikrobiologie virologie MeSH
- Poxviridae účinky léků fyziologie MeSH
- žábry mikrobiologie patologie virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Maďarsko MeSH
- Německo MeSH
Common carp is a major aquaculture species worldwide, commonly sold alive but also as processed headless carcass or filets. However, recording of processing yields is impossible on live breeding candidates, and alternatives for genetic improvement are either sib selection based on slaughtered fish, or indirect selection on correlated traits recorded in vivo. Morphological predictors that can be measured on live fish and that correlate with real slaughter yields hence remain a possible alternative. To quantify the power of morphological predictors for genetic improvement of yields, we estimated genetic parameters of slaughter yields and various predictors in 3-year-old common carp reared communally under semi-intensive pond conditions. The experimental stock was established by a partial factorial design of 20 dams and 40 sires, and 1553 progenies were assigned to their parents using 12 microsatellites. Slaughter yields were highly heritable (h2 = 0.46 for headless carcass yield, 0.50 for filet yield) and strongly genetically correlated with each other (rg = 0.96). To create morphological predictors, external (phenotypes, 2D digitization) and internal measurements (ultrasound imagery) were recorded and combined by multiple linear regression to predict slaughter yields. The accuracy of the phenotypic prediction was high for headless carcass yield (R2 = 0.63) and intermediate for filet yield (R2 = 0.49). Interestingly, heritability of predicted slaughter yields (0.48-0.63) was higher than that of the real yields to predict, and had high genetic correlations with the real yields (rg = 0.84-0.88). In addition, both predicted yields were highly phenotypically and genetically correlated with each other (0.95 for both), suggesting that using predicted headless carcass yield in a breeding program would be a good way to also improve filet yield. Besides, two individual predictors (P1 and P2) included in the prediction models and two simple internal measurements (E4 and E23) exhibited intermediate to high heritability estimates (h2 = 0.34 - 0.72) and significant genetic correlations to the slaughter yields (rg = |0.39 - 0.83|). The results show that there is a solid potential for genetic improvement of slaughter yields by selecting for predictor traits recorded on live breeding candidates of common carp.
- Publikační typ
- časopisecké články MeSH
Cyprinids are the most important group of farmed fish globally in terms of production volume, with common carp (Cyprinus carpio) being one of the most valuable species of the group. The use of modern selective breeding methods in carp is at a formative stage, implying a large scope for genetic improvement of key production traits. In the current study, a population of 1,425 carp juveniles, originating from a partial factorial cross between 40 sires and 20 dams, was used for investigating the potential of genomic selection (GS) for juvenile growth, an exemplar polygenic production trait. RAD sequencing was used to identify and genotype SNP markers for subsequent parentage assignment, construction of a medium density genetic map (12,311 SNPs), genome-wide association study (GWAS), and testing of GS. A moderate heritability was estimated for body length of carp at 120 days (as a proxy of juvenile growth) of 0.33 (s.e. 0.05). No genome-wide significant QTL was identified using a single marker GWAS approach. Genomic prediction of breeding values outperformed pedigree-based prediction, resulting in 18% improvement in prediction accuracy. The impact of reduced SNP densities on prediction accuracy was tested by varying minor allele frequency (MAF) thresholds, with no drop in prediction accuracy until the MAF threshold is set <0.3 (2,744 SNPs). These results point to the potential for GS to improve economically important traits in common carp breeding programs.
- Publikační typ
- časopisecké články MeSH
Using farmed common carp, we investigated the genetic background of the second year overwintering performance and its relation to the performance during the third growing season and at market size. The experimental stock was established by partial factorial design with a series of 4 factorial matings of 5 dams and 10 sires each. The families were reared communally and pedigree was re-constructed with 93.6% success using 12 microsatellites on 2008 offspring. Three successive recordings (second autumn, third spring, and third autumn-market size) covering two periods (second overwintering, third growing season) were included. Body weight, Fulton's condition factor and percent muscle fat content were recorded at all times and headless carcass yield and fillet yield were recorded at market size. Specific growth rate, absolute and relative fat change and overall survival were calculated for each period. Heritability estimates were significantly different from zero and almost all traits were moderately to highly heritable (h2 = 0.36-1.00), except survival in both periods and fat change (both patterns) during overwintering (h2 = 0.12-0.15). Genetic and phenotypic correlations imply that selection against weight loss and fat loss during overwintering is expected to lead to a better winter survival, together with a positive effect on growth in the third growing season. Interestingly, higher muscle fat content was genetically correlated to lower survival in the following period (rg = -0.59; -0.53, respectively for winter and the third summer). On the other hand, higher muscle fat was also genetically linked to better slaughter yields. Moreover, selection for higher condition factor would lead to better performance during winter, growing season and at market size.
- MeSH
- chov zvířat metody MeSH
- fenotyp MeSH
- kapři genetika růst a vývoj metabolismus MeSH
- kvantitativní znak dědičný MeSH
- maso analýza MeSH
- mikrosatelitní repetice genetika MeSH
- modely genetické MeSH
- složení těla genetika MeSH
- tělesná hmotnost genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Outbreaks of koi sleepy disease (KSD) caused by carp edema virus (CEV) may seriously affect populations of farmed common carp, one of the most important fish species for global food production. The present study shows further evidence for the involvement of CEV in outbreaks of KSD among carp and koi populations: in a series of infection experiments, CEV from two different genogroups could be transmitted to several strains of naïve common carp via cohabitation with fish infected with CEV. In recipient fish, clinical signs of KSD were induced. The virus load and viral gene expression results confirm gills as the target organ for CEV replication. Gill explants also allowed for a limited virus replication in vitro. The in vivo infection experiments revealed differences in the virulence of the two CEV genogroups which were associated with infections in koi or in common carp, with higher virulence towards the same fish variety as the donor fish. When the susceptibility of different carp strains to a CEV infection and the development of KSD were experimentally investigated, Amur wild carp showed to be relatively more resistant to the infection and did not develop clinical signs for KSD. However, the resistance could not be related to a higher magnitude of type I IFN responses of affected tissues. Despite not having a mechanistic explanation for the resistance of Amur wild carp to KSD, we recommend using this carp strain in breeding programs to limit potential losses caused by CEV in aquaculture.
- MeSH
- infekce vyvolané poxviry veterinární virologie MeSH
- kapři virologie MeSH
- kůže virologie MeSH
- nemoci ryb virologie MeSH
- Poxviridae * MeSH
- vodní hospodářství metody MeSH
- žábry virologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH