Jasmonates are plant hormones that induce the accumulation of many secondary metabolites, such as rutin in buckwheat, via regulation of jasmonate-responsive transcription factors. Here, we report on the identification of a clade of jasmonate-responsive subgroup 4 MYB transcription factors, FtMYB13, FtMYB14, FtMYB15, and FtMYB16, which directly repress rutin biosynthesis in Fagopyrum tataricum. Immunoblot analysis showed that FtMYB13, FtMYB14, and FtMYB15 could be degraded via the 26S proteasome in the COI1-dependent jasmonate signaling pathway, and that this degradation is due to the SID motif in their C-terminus. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that FtMYB13, FtMYB14, and FtMYB15 interact with the importin protein Sensitive to ABA and Drought 2 (FtSAD2) in stem and inflorescence. Furthermore, the key repressor of jasmonate signaling FtJAZ1 specifically interacts with FtMYB13. Point mutation analysis showed that the conserved Asp residue of the SID domain contributes to mediating protein-protein interaction. Protoplast transient activation assays demonstrated that FtMYB13, FtMYB14, and FtMYB15 directly repress phenylalanine ammonia lyase (FtPAL) gene expression, and FtSAD2 and FtJAZ1 significantly promote the repressing activity of FtMYBs. These findings may ultimately be promising for further engineering of plant secondary metabolism.
- MeSH
- cyklopentany metabolismus MeSH
- Fagopyrum chemie genetika metabolismus MeSH
- fenylalaninamoniaklyasa genetika metabolismus MeSH
- multigenová rodina MeSH
- oxylipiny metabolismus MeSH
- proteinové domény MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny chemie genetika metabolismus MeSH
- rutin biosyntéza MeSH
- transkripční faktory chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
- MeSH
- editace RNA * MeSH
- genom mitochondriální genetika MeSH
- genom protozoální genetika MeSH
- izoformy RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- sestřih RNA MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Trypanosomatina genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
- MeSH
- druhová specificita MeSH
- energetický metabolismus genetika MeSH
- fylogeneze MeSH
- genom protozoální genetika MeSH
- genová ontologie MeSH
- Leishmania klasifikace genetika patogenita MeSH
- molekulární evoluce * MeSH
- protozoální geny genetika MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosomatina klasifikace genetika patogenita MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Kets, an ethnic group in the Yenisei River basin, Russia, are considered the last nomadic hunter-gatherers of Siberia, and Ket language has no transparent affiliation with any language family. We investigated connections between the Kets and Siberian and North American populations, with emphasis on the Mal'ta and Paleo-Eskimo ancient genomes, using original data from 46 unrelated samples of Kets and 42 samples of their neighboring ethnic groups (Uralic-speaking Nganasans, Enets, and Selkups). We genotyped over 130,000 autosomal SNPs, identified mitochondrial and Y-chromosomal haplogroups, and performed high-coverage genome sequencing of two Ket individuals. We established that Nganasans, Kets, Selkups, and Yukaghirs form a cluster of populations most closely related to Paleo-Eskimos in Siberia (not considering indigenous populations of Chukotka and Kamchatka). Kets are closely related to modern Selkups and to some Bronze and Iron Age populations of the Altai region, with all these groups sharing a high degree of Mal'ta ancestry. Implications of these findings for the linguistic hypothesis uniting Ket and Na-Dene languages into a language macrofamily are discussed.
- MeSH
- etnicita genetika MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genom lidský * MeSH
- haplotypy MeSH
- Inuité genetika MeSH
- jazyk (prostředek komunikace) MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- lidský chromozom Y MeSH
- migrace lidstva MeSH
- mitochondriální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Sibiř MeSH
UNLABELLED: Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. IMPORTANCE: Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
- MeSH
- Amoebozoa parazitologie MeSH
- delece genu * MeSH
- editace RNA * MeSH
- Kinetoplastida genetika růst a vývoj MeSH
- mitochondriální DNA chemie genetika MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The kinetoplastids are a widespread and important group of single-celled eukaryotes, many of which are devastating parasites of animals, including humans. We have discovered a new insect trypanosomatid in the gut of Culex pipiens mosquitoes. Glyceraldehyde-3-phosphate dehydrogenase- and SSU rRNA-based phylogenetic analyses show this parasite to constitute a distinct branch between the free-living Bodo saltans and the obligatory parasitic clades represented by the genus Trypanosoma and other trypanosomatids. From draft genome sequence data, we identified 114 protein genes shared among the new flagellate, 15 trypanosomatid species, B. saltans, and the heterolobosean Naegleria gruberi, as well as 129 protein genes shared with the basal kinetoplastid Perkinsela sp. Individual protein phylogenies together with analyses of concatenated alignments show that the new species, here named Paratrypanosoma confusum n. gen., n. sp., branches with very high support at the base of the family Trypanosomatidae. P. confusum thus represents a long-sought-after missing link between the ancestral free-living bodonids and the derived parasitic trypanosomatids. Further analysis of the P. confusum genome should provide insight into the emergence of parasitism in the medically important trypanosomatids.
- MeSH
- Culex parazitologie MeSH
- fylogeneze * MeSH
- genom MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální chemie MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza proteinů MeSH
- sekvenční analýza RNA MeSH
- sekvenční seřazení MeSH
- Trypanosomatina klasifikace genetika izolace a purifikace ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH