Aldose reductase, the first enzyme of the polyol pathway represents a key drug target in therapy of diabetic complications. In this study a series of six novel rhodanine based inhibitors of aldose reductase was designed, synthesized, and tested for their ability to inhibit aldose reductase and for selectivity relative to structurally related aldehyde reductase. Aldose reductase inhibitory activities of the compounds were characterized by the IC50 values ranging from 2000 nM to 20 nM. The values of selectivity factors relative to aldehyde reductase were decreasing in the same array from 24 to 5. In silico docking into the inhibitor binding site of aldose reductase revealed a specific binding pattern of the compounds comprising interaction of the deprotonated 4-hydroxybenzylidene group with the anion-binding sub-pocket of aldose reductase, creating a strong H-bond and charge interactions. Predicted pH-distribution profiles of the novel compounds into octanol, supported by experimentally determined distribution ratios, favour drug uptake at the physiological pH, as a result of the presence of the low-acidic phenolic group, instead of the more acidic carboxymethyl functional group.
- MeSH
- aldehydreduktasa MeSH
- inhibitory enzymů * chemie MeSH
- rhodanin * farmakologie chemie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
(4-Oxo-2-thioxothiazolidin-3-yl)acetic acids exhibit a wide range of pharmacological activities. Among them, the only derivative used in clinical practice is the aldose reductase inhibitor epalrestat. Structurally related compounds, [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acid derivatives were prepared previously as potential antifungal agents. This study was aimed at the determination of aldose reductase inhibitory action of the compounds in comparison with epalrestat and evaluation of structure-activity relationships (SAR). The aldose reductase (ALR2) enzyme was isolated from the rat eye lenses, while aldehyde reductase (ALR1) was obtained from the kidneys. The compounds studied were found to be potent inhibitors of ALR2 with submicromolar IC50 values. (Z)-2-(5-(1-(5-butylpyrazin-2-yl)ethylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (3) was identified as the most efficacious inhibitor (over five times more potent than epalrestat) with mixed-type inhibition. All the compounds also exhibited low antiproliferative (cytotoxic) activity to the HepG2 cell line. Molecular docking simulations of 3 into the binding site of the aldose reductase enzyme identified His110, Trp111, Tyr48, and Leu300 as the crucial interaction counterparts responsible for the high-affinity binding. The selectivity factor for 3 in relation to the structurally related ALR1 was comparable to that for epalrestat. SAR conclusions suggest possible modifications to improve further inhibition efficacy, selectivity, and biological availability in the group of rhodanine carboxylic acids.
- MeSH
- aldehydreduktasa antagonisté a inhibitory metabolismus MeSH
- buňky Hep G2 MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- kyselina octová chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- oční čočka účinky léků enzymologie MeSH
- potkani Wistar MeSH
- rhodanin analogy a deriváty chemie farmakologie MeSH
- thiazolidiny chemie farmakologie MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Based on current treatment of Alzheimer's disease, where the carbamate inhibitor Rivastigmine is used, two series of carbamate derivatives were prepared: (i) N-phenylcarbamates with additional carbamate group (1-12) and (ii) N-phenylcarbamates with monosaccharide moiety (13-24). All compounds were tested for the inhibitory effect on both of the cholinesterases, electric eel acetylcholinesterase (eeAChE) and butyrylcholinesterase from equine serum (eqBChE) and the inhibitory activity (expressed as IC50 values) was compared with that of the established drugs Galanthamine and Rivastigmine. The compounds with two carbamate groups 1-12 revealed higher inhibitory efficiency on both cholinesterases in compared with monosaccharide derived carbamates 13-24 and with Rivastigmine. The significant decrease of inhibitory efficiency on eqBChE (also for eeAChE but in less manner) was observed after deacetalization of monosaccharide. Moreover, the type of inhibitory mechanism of five chosen compounds was studied. It was found, that compounds with two carbamate groups act presumably via a mixed inhibitory mechanism and the compounds with monosaccharide moiety act as non-competitive inhibitors. The lipophilicity of tested compounds was determined using partition coefficient. Specific positions of the inhibitors in the binding sites of cholinesterases were determined using molecular modeling and the results indicate the importance of phenylcarbamate orientation in the catalytic gorges of both enzymes.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- Electrophorus MeSH
- fenylkarbamáty chemická syntéza chemie farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- koně MeSH
- ligandy MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of this study was to investigate aldose reductase inhibitory action of setipiprant as a potential additional mechanism contributing to its anti-inflammatory action. Aldose reductase activity was determined by spectrophotometric measuring of NADPH consumption. Setipiprant was found to inhibit aldose reductase/NADPH-mediated reduction of 4-hydroxynonenal, 4-hydroxynonenal glutathione and prostaglandin H2 substrates, all relevant to the process of inflammation. Molecular modeling simulations into the aldose reductase inhibitor binding site revealed an interaction pattern of setipiprant. Considering multifactorial etiology of inflammatory pathologies, it is suggested that, in addition to the antagonizing prostaglandin D2 receptor, inhibition of aldose reductase may contribute to the reported anti-inflammatory action of setipiprant.
- MeSH
- aldehydreduktasa antagonisté a inhibitory metabolismus MeSH
- antiflogistika chemie farmakologie MeSH
- indoly chemie farmakologie MeSH
- inhibitory enzymů metabolismus farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- NADP metabolismus MeSH
- naftaleny chemie farmakologie MeSH
- potkani Wistar MeSH
- simulace molekulového dockingu metody MeSH
- vazebná místa fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH