In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- MeSH
- autofagie * fyziologie MeSH
- autofagozomy MeSH
- biologické markery MeSH
- biotest normy MeSH
- lidé MeSH
- lyzozomy MeSH
- proteiny spojené s autofagií metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- směrnice MeSH
Lipid catabolism and anabolism changes play a role in stemness acquisition by cancer cells, and cancer stem cells (CSCs) are particularly dependent on the activity of the enzymes involved in these processes. Lipidomic changes could play a role in CSCs' ability to cause disease relapse and chemoresistance. The exploration of lipid composition and metabolism changes in CSCs in the context of hepatocellular cancer (HCC) is still incomplete and their lipidomic scenario continues to be elusive. We aimed to evaluate through high-throughput mass spectrometry (MS)-based lipidomics the levels of the members of the six major classes of sphingolipids and phospholipids in two HCC cell lines (HepG2 and Huh-7) silenced for the expression of histone variant macroH2A1 (favoring stemness acquisition), or silenced for the expression of focal adhesion tyrosine kinase (FAK) (hindering aggressiveness and stemness). Transcriptomic changes were evaluated by RNA sequencing as well. We found definite lipidomic and transcriptomic changes in the HCC lines upon knockdown (KD) of macroH2A1 or FAK, in line with the acquisition or loss of stemness features. In particular, macroH2A1 KD increased total sphingomyelin (SM) levels and decreased total lysophosphatidylcholine (LPC) levels, while FAK KD decreased total phosphatidylcholine (PC) levels. In conclusion, in HCC cell lines knocked down for specific signaling/epigenetic processes driving opposite stemness potential, we defined a lipidomic signature that hallmarks hepatic CSCs to be exploited for therapeutic strategies.
- MeSH
- buňky Hep G2 MeSH
- fokální adhezní kinasa 1 antagonisté a inhibitory nedostatek genetika MeSH
- fosfatidylcholiny metabolismus MeSH
- genový knockdown MeSH
- hepatocelulární karcinom genetika metabolismus patologie MeSH
- histony antagonisté a inhibitory nedostatek genetika MeSH
- lidé MeSH
- lipidomika MeSH
- lysofosfatidylcholiny metabolismus MeSH
- metabolismus lipidů * genetika MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky metabolismus patologie MeSH
- nádory jater genetika metabolismus patologie MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování transkriptomu MeSH
- sfingomyeliny metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Living beings spend their lives and carry out their daily activities interacting with environmental situations that present space-time variations and that involve contact with other life forms, which may behave as commensals or as invaders and/or parasites. The characteristics of the environment, as well as the processes that support the maintenance of life and that characterize the execution of activities of daily life generally present periodic variations, which are mostly synchronized with the light-dark cycle determined by Earth's rotation on its axis. These rhythms with 24-h periodicity, defined as circadian, influence events linked to the interaction between hosts and hosted microorganisms and can dramatically determine the outcome of this interplay. As for the various pathological conditions resulting from host-microorganism interactions, a particularly interesting scenario concerns infections by viruses. When a viral agent enters the body, it alters the biological processes of the infected cells in order to favour its replication and to spread to various tissues. Though our knowledge concerning the mutual influence between the biological clock and viruses is still limited, recent studies start to unravel interesting aspects of the clock-virus molecular interplay. Three different aspects of this interplay are addressed in this mini-review and include the circadian regulation of both innate and adaptive immune systems, the impact of the biological clock on viral infection itself, and finally the putative perturbations that the virus may confer to the clock leading to its deregulation.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The biological clock controls at the molecular level several aspects of mammalian physiology, by regulating daily oscillations of crucial biological processes such as nutrient metabolism in the liver. Disruption of the circadian clock circuitry has recently been identified as an independent risk factor for cancer and classified as a potential group 2A carcinogen to humans. Hepatocellular carcinoma (HCC) is the prevailing histological type of primary liver cancer, one of the most important causes of cancer-related death worldwide. HCC onset and progression is related to B and C viral hepatitis, alcoholic and especially non-alcoholic fatty liver disease (NAFLD)-related milieu of fibrosis, cirrhosis, and chronic inflammation. In this review, we recapitulate the state-of-the-art knowledge on the interplay between the biological clock and the oncogenic pathways and mechanisms involved in hepatocarcinogenesis. Finally, we propose how a deeper understanding of circadian clock circuitry-cancer pathways' crosstalk is promising for developing new strategies for HCC prevention and management.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- cirkadiánní hodiny * MeSH
- lidé MeSH
- proteiny hedgehog MeSH
- signální transdukce MeSH
- ztučnělá játra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- komentáře MeSH
- práce podpořená grantem MeSH
- úvodníky MeSH
One of the many systems that weakens as we age is our immune system and there is a reduction in the GH-IGF1 axis activity with increasing age. In this study we evaluated the immune system and the GH-IGF1 axis function in healthy ageing. CD3, CD4, CD20, CD25, HLA-DR and GH showed acrophase during the night, whereas CD8, CD16 and TCRgamma delta expressing cells showed acrophase during the day. MESOR of CD3 was higher in the old aged subjects, MESOR of CD20 and CD20 values at 14:00h and at 02:00h were higher in the young middle aged subjects, MESOR of CD25 and CD25 values at 10:00 were higher in the elderly subjects, MESOR of HLA-DR was higher in the young middle aged subjects, whereas MESOR of DR+ T cells and HLA-DR at 02:00h were higher in the elderly subjects, MESOR of TCRgamma delta bearing cells was higher in the elderly subjects, GH value at 18:00h was also higher in the elderly subjects, and MESOR of IGF1 was higher in the young middle aged subjects. There was a statistically significant difference for the acrophases of CD25, HLA-DR and IGF1. There were different and opposing correlations among lymphocyte subpopulations and GH-IGF1 axis hormones in young and middle aged subjects in comparison with old aged subjects. Linear regression evidenced a statistically significant positive trend between age and the 24h mean of CD3 and CD25 and a statistically significant negative trend between age and the 24h mean of CD20 and GH. In conclusion, ageing is associated with an altered GH and IGF1 secretion, with decreased peripheral B cell compartment, increased peripheral T cell compartment and alterations of circadian rhythmicity.
- MeSH
- biomedicínský výzkum MeSH
- chronobiologické jevy MeSH
- cirkadiánní rytmus MeSH
- endokrinní systém enzymologie imunologie metabolismus MeSH
- experimenty na lidech MeSH
- imunitní systém enzymologie imunologie metabolismus MeSH
- imunologické faktory imunologie izolace a purifikace metabolismus MeSH
- insulinu podobný růstový faktor I imunologie izolace a purifikace metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidský růstový hormon imunologie izolace a purifikace metabolismus MeSH
- lymfocyty fyziologie imunologie metabolismus MeSH
- nervový systém enzymologie imunologie metabolismus MeSH
- proliferace buněk MeSH
- senioři MeSH
- stárnutí fyziologie genetika imunologie MeSH
- statistika jako téma MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH