The complexity of omes - the key cellular ensembles (genome and epigenome, transcriptome, proteome, and metabolome) - is becoming increasingly understood in terms of big-data analysis, the omics. Amongst these, proteomics provides a global description of quantitative and qualitative alterations of protein expression (or protein abundance in body fluids) in response to physiologic or pathologic processes while metabolomics offers a functional portrait of the physiological state by quantifying metabolite abundances in biological samples. Here, we summarize how different techniques of proteomic and metabolic analysis can be used to define key biochemical characteristics of pheochromocytomas/paragangliomas (PPGL). The significance of omics in understanding features of PPGL biology that might translate to improved diagnosis and treatment will be highlighted.
Paragangliomas and pheochromocytomas (PPGLs) are chromaffin tumors associated with severe catecholamine-induced morbidities. Surgical removal is often curative. However, complete resection may not be an option for patients with succinate dehydrogenase subunit A-D (SDHx) mutations. SDHx mutations are associated with a high risk for multiple recurrent, and metastatic PPGLs. Treatment options in these cases are limited and prognosis is dismal once metastases are present. Identification of new therapeutic targets and candidate drugs is thus urgently needed. Previously, we showed elevated expression of succinate receptor 1 (SUCNR1) in SDHB PPGLs and SDHD head and neck paragangliomas. Its ligand succinate has been reported to accumulate due to SDHx mutations. We thus hypothesize that autocrine stimulation of SUCNR1 plays a role in the pathogenesis of SDHx mutation-derived PPGLs. We confirmed elevated SUCNR1 expression in SDHx PPGLs and after SDHB knockout in progenitor cells derived from a human pheochromocytoma (hPheo1). Succinate significantly increased viability of SUCNR1-transfected PC12 and ERK pathway signaling compared to control cells. Candidate SUCNR1 inhibitors successfully reversed proliferative effects of succinate. Our data reveal an unrecognized oncometabolic function of succinate in SDHx PPGLs, providing a growth advantage via SUCNR1.
- MeSH
- feochromocytom farmakoterapie enzymologie genetika metabolismus MeSH
- krysa rodu rattus MeSH
- kyselina jantarová metabolismus MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- paragangliom farmakoterapie enzymologie genetika metabolismus MeSH
- podjednotky proteinů genetika metabolismus MeSH
- receptory spřažené s G-proteiny antagonisté a inhibitory genetika metabolismus MeSH
- sukcinátdehydrogenasa nedostatek genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH