BACKGROUND: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. METHODS: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. RESULTS: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. CONCLUSION: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.
- MeSH
- biologické markery MeSH
- buněčná diferenciace * MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky cytologie metabolismus ultrastruktura MeSH
- imunohistochemie MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus ultrastruktura MeSH
- kultivované buňky MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- viabilita buněk MeSH
- železité sloučeniny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Sedentary bird species are suitable model hosts for identifying potential vectors of avian blood parasites. We studied haemosporidian infections in the Tengmalm's Owl (Aegolius funereus) in the Ore Mountains of the Czech Republic using molecular detection methods. Sex of owl nestlings was scored using molecular sexing based on fragment analysis of PCR-amplified CHD1 introns. Observed infection prevalences in nestlings and adult owls were 51 and 86 %, respectively. Five parasite lineages were detected. Most of the infections comprised the Leucocytozoon AEFUN02 and STOCC06 lineages that probably refer to distinct Leucocytozoon species. Other lineages were detected only sporadically. Mixed infections were found in 49 % of samples. The main factor affecting the probability of infection was host age. No effect of individual sex on infection probability was evidenced. The youngest infected nestling was 12 days old. High parasite prevalence in the Tengmalm's Owl nestlings suggests that insect vectors must enter nest boxes to transmit parasites before fledging. Hence, we placed sticky insect traps into modified nest boxes, collected potential insect vectors, and examined them for the presence of haemosporidian parasites using molecular detection. We trapped 201 insects which were determined as biting midges from the Culicoides genus and two black fly species, Simulium (Nevermannia) vernum and Simulium (Eusimulium) angustipes. Six haemosporidian lineages were detected in the potential insect vectors, among which the Leucocytozoon lineage BT2 was common to the Tengmalm's Owl and the trapped insects. However, we have not detected the most frequently encountered Tengmalm's Owl Leucocytozoon lineages AEFUN02 and STOCC06 in insects.
- MeSH
- Ceratopogonidae parazitologie MeSH
- Haemosporida genetika izolace a purifikace MeSH
- hmyz - vektory parazitologie MeSH
- nemoci ptáků epidemiologie parazitologie přenos MeSH
- polymerázová řetězová reakce MeSH
- prevalence MeSH
- protozoální infekce zvířat epidemiologie parazitologie přenos MeSH
- sexuální faktory MeSH
- Simuliidae parazitologie MeSH
- Stringiformes parazitologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Haemosporidians and trypanosomes of the northern goshawk (Accipiter gentilis) population in the Czech Republic were studied by morphological and molecular methods. Despite the wide distribution of these medium-large birds of prey, virtually nothing is known about their blood parasites. During a 5-year period, altogether 88 nestlings and 15 adults were screened for haemosporidians and trypanosomes by microscopic examination of blood smears and by nested PCR. Both methods revealed consistently higher prevalence of blood protists in adults, Leucocytozoon (80.0 % in adults vs. 13.6 % in nestlings), Haemoproteus (60.0 vs. 2.3 %), Plasmodium (6.7 vs. 0 %), and Trypanosoma (60.0 vs. 2.3 %). Altogether, five haemosporidian lineages were detected by cytochrome b sequencing. Two broadly distributed and host nonspecific lineages, Plasmodium (TURDUS1) and Leucocytozoon (BT2), were detected only sporadically, while three newly described northern goshawk host-specific Leucocytozoon lineages (ACGE01-03) represent the absolute majority of the haemosporidians identified by molecular methods. Our findings support evidences that in falconiform birds the Leucocytozoon toddi group is formed by several host-specific clusters, with Leucocytozoon buteonis in buzzards and Leucocytozoon mathisi in hawks. Between-year comparisons revealed that the infection status of adults remained predominantly unchanged and individuals stayed uninfected or possessed the same parasite lineages; however, two gains and one loss of blood parasite taxa were also recorded.
- MeSH
- cytochromy b genetika MeSH
- Falconiformes parazitologie MeSH
- fylogeneze MeSH
- Haemosporida klasifikace genetika izolace a purifikace MeSH
- hostitelská specificita MeSH
- malárie ptačí epidemiologie parazitologie MeSH
- nemoci ptáků epidemiologie parazitologie MeSH
- parazitemie epidemiologie parazitologie veterinární MeSH
- Plasmodium klasifikace genetika izolace a purifikace MeSH
- polymerázová řetězová reakce veterinární MeSH
- prevalence MeSH
- protozoální DNA chemie izolace a purifikace MeSH
- protozoální infekce zvířat epidemiologie parazitologie MeSH
- sekvenční seřazení veterinární MeSH
- Trypanosoma klasifikace genetika izolace a purifikace MeSH
- trypanozomiáza epidemiologie parazitologie veterinární MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The degree to which avian haemosporidian parasites can exploit different vectors as a definitive host has ecological implications for their transmission and biogeography. Studies targeting haemosporidian parasites using precise molecular detection methods are almost lacking in Central Europe, however. Here, we utilized PCR-based molecular methods to detect avian haemosporidians in insect vectors in the Czech Republic. Nine lineages of parasites belonging to three genera, Haemoproteus, Plasmodium, and Leucocytozoon, were detected in pooled samples of insect individuals, of which three lineages had not yet been discovered in previous studies. All three Leucocytozoon lineages were found exclusively in black flies, while five Haemoproteus lineages were found in biting midges. The most abundant insect species Culicoides kibunensis harbored three Haemoproteus lineages, and the second-most numerous species Culicoides segnis even four. The positive mosquitoes of Culex pipiens complex hosted two parasite lineages, one Plasmodium and one Haemoproteus, the latter of which, however, could suggest the aberrant development of this parasite in an unusual invertebrate host. The co-occurrence of Haemoproteus ROFI1 and TURDUS2 lineages in both insects and birds at the same study plot suggests a transmission of these lineages during breeding season of birds.
- MeSH
- Ceratopogonidae parazitologie MeSH
- Culex parazitologie MeSH
- Haemosporida klasifikace genetika izolace a purifikace MeSH
- hmyz MeSH
- polymerázová řetězová reakce MeSH
- protozoální DNA genetika MeSH
- ptáci parazitologie MeSH
- Simuliidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH