Special education practice and theory show us that the number of pupils with specific learning disabilities has been continuously increasing for the last 5 years. Therefore, our investigation in the whole Czech Republic focused on the state of the issue among pupils with severe visual impairment. The topic is difficult to elaborate, mainly because very few authors have addressed it to date, despite the fact that special education practice sees this need. The following article summarises data collected through both quantitative and qualitative methods, thanks to the IGA project – The phenomenon of specific learning disabilities in pupils with visual impairment.
Proper fetal development requires tight regulation of serotonin concentrations within the fetoplacental unit. This homeostasis is partly maintained by the placental transporter OCT3/SLC22A3, which takes up serotonin from the fetal circulation. Metformin, an antidiabetic drug commonly used to treat gestational diabetes mellitus, was shown to inhibit OCT3. We, therefore, hypothesized that its use during pregnancy could disrupt placental serotonin homeostasis. This hypothesis was tested using three experimental model systems: primary trophoblast cells isolated from the human term placenta, fresh villous human term placenta fragments, and rat term placenta perfusions. Inhibition of serotonin transport by metformin at three concentrations (1 μM, 10 μM, and 100 μM) was assessed in all three models. The OCT3 inhibitor decynium-22 (100 μM) and paroxetine (100 μM), a dual inhibitor of SERT and OCT3, were used as controls. In primary trophoblasts, paroxetine exhibited the strongest inhibition of serotonin uptake, followed by decynium-22. Metformin showed a concentration-dependent effect, reducing serotonin uptake by up to 57 % at the highest concentration. Its inhibitory effect was less pronounced in fresh villous fragments but remained statistically significant at all concentrations. In the perfused rat placenta, metformin demonstrated a concentration-dependent effect, reducing placental serotonin uptake by 44 % at the highest concentration tested. Our findings across all experimental models show inhibition of placental OCT3 by metformin, resulting in reduced serotonin uptake by the trophoblast. This sheds light on mechanisms that may underpin metformin-mediated effects on fetal development.
- MeSH
- biologický transport účinky léků MeSH
- hypoglykemika farmakologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- metformin * farmakologie MeSH
- oktamerní transkripční faktor 3 metabolismus MeSH
- placenta * metabolismus účinky léků MeSH
- potkani Wistar MeSH
- proteiny přenášející organické kationty MeSH
- serotonin * metabolismus MeSH
- těhotenství MeSH
- trofoblasty * metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled. In this study, we investigated the expression of enzymes and transporters involved in synthesis, degradation, and transport of norepinephrine and dopamine in the human placenta and rat fetoplacental unit. Quantitative PCR and Western blot analyses were performed in early-to-late gestation in humans (first trimester vs. term placenta) and mid-to-late gestation in rats (placenta and fetal brain, intestines, liver, lungs, and heart). In addition, we analyzed the gene expression patterns in isolated primary trophoblast cells from the human placenta and placenta-derived cell lines (HRP-1, BeWo, JEG-3). In both human and rat placentas, the study identifies the presence of only PNMT, COMT, and NET at the mRNA and protein levels, with the expression of PNMT and NET showing gestational age dependency. On the other hand, rat fetal tissues consistently express the catecholamine pathway genes, revealing distinct developmental expression patterns. Lastly, we report significant transcriptional profile variations in different placental cell models, emphasizing the importance of careful model selection for catecholamine metabolism/transport studies. Collectively, integrating findings from humans and rats enhances our understanding of the dynamic regulatory mechanisms that underlie catecholamine dynamics during pregnancy. We identified similar patterns in both species across gestation, suggesting conserved molecular mechanisms and potentially shedding light on shared biological processes influencing placental development.
- MeSH
- dopamin * MeSH
- katecholaminy * MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- noradrenalin MeSH
- placenta MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Serotonin (5-HT) is a biogenic monoamine with diverse functions in multiple human organs and tissues. During pregnancy, tightly regulated levels of 5-HT in the fetoplacental unit are critical for proper placental functions, fetal development, and programming. Despite being a non-neuronal organ, the placenta expresses a suite of homeostatic proteins, membrane transporters and metabolizing enzymes, to regulate monoamine levels. We hypothesized that placental 5-HT clearance is important for maintaining 5-HT levels in the fetoplacental unit. We therefore investigated placental 5-HT uptake from the umbilical circulation at physiological and supraphysiological levels as well as placental metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA efflux from trophoblast cells. METHODS: We employed a systematic approach using advanced organ-, tissue-, and cellular-level models of the human placenta to investigate the transport and metabolism of 5-HT in the fetoplacental unit. Human placentas from uncomplicated term pregnancies were used for perfusion studies, culturing explants, and isolating primary trophoblast cells. RESULTS: Using the dually perfused placenta, we observed a high and concentration-dependent placental extraction of 5-HT from the fetal circulation. Subsequently, within the placenta, 5-HT was metabolized to 5-hydroxyindoleacetic acid (5-HIAA), which was then unidirectionally excreted to the maternal circulation. In the explant cultures and primary trophoblast cells, we show concentration- and inhibitor-dependent 5-HT uptake and metabolism and subsequent 5-HIAA release into the media. Droplet digital PCR revealed that the dominant gene in all models was MAO-A, supporting the crucial role of 5-HT metabolism in placental 5-HT clearance. CONCLUSIONS: Taken together, we present transcriptional and functional evidence that the human placenta has an efficient 5-HT clearance system involving (1) removal of 5-HT from the fetal circulation by OCT3, (2) metabolism to 5-HIAA by MAO-A, and (3) selective 5-HIAA excretion to the maternal circulation via the MRP2 transporter. This synchronized mechanism is critical for regulating 5-HT in the fetoplacental unit; however, it can be compromised by external insults such as antidepressant drugs.
- MeSH
- aminy MeSH
- kinetika MeSH
- kyselina hydroxyindoloctová MeSH
- lidé MeSH
- placenta * MeSH
- serotonin * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The following article aims to present partial outputs of the project TAČR (TL03000679) – Reduction of information deficit and development of the imagination of people with visual impairment through 3D models with auditory elements. The project is currently in the final part of its solution. This paper will not only present the project goals but mainly focus on the outputs and partial results achieved so far. The paper will focus not only on 3D printing but mainly on the outcomes aimed at developing the spatial imagination of people with severe visual impairment.
The following post aims to present partial results from the ongoing research, which is based on the initiative of the Abakus Foundation. The main objective of the project is to map good practice in the system of support for the independence of young adults with disabilities in the Czech Republic. Supporting the independence of people with disabilities is one of the important areas that contributes to improving the quality of life. This concerns both the disabled individual and the person caring for them. In this paper, we will offer a brief insight into the issue of independence and partial results of the research carried out.
The placenta represents a non-neuronal organ capable of transporting and metabolizing monoamines. Since these bioactive molecules participate in numerous processes essential for placental and fetal physiology, any imbalance in their levels during pregnancy may affect brain development, projecting a higher risk of behavioral disorders in childhood or adulthood. Notably, the monoamine system in the placenta is a target of various psychoactive drugs and can be disrupted in several pregnancy pathologies. As research in pregnant women poses significant ethical restrictions, animal models are widely employed to study monoamine homeostasis as a mechanism involved in fetal programming. However, detailed knowledge of monoamine transport in the rat placenta is still lacking. Moreover, relatability to the human placental monoamine system is not examined. The present study provides insights into the transplacental monoamine dynamics between maternal and fetal circulation. We show that norepinephrine maternal-to-fetal transport is <4% due to high metabolism within the trophoblast. In contrast, dopamine maternal-to-fetal transport exceeds 25%, likely through passive transport across the membrane. In addition, we show high clearance of norepinephrine and dopamine from the fetal circulation mediated by the organic cation transporter 3 (OCT3). Altogether, we present transcriptional and functional evidence that the in situ rat placenta perfusion represents a suitable model for (patho)physiological investigation of dopamine and norepinephrine homeostasis in the fetoplacental unit. With the rapid advancements in drug discovery and environmental toxicity, the use of rat placenta as a preclinical model could facilitate screening of possible xenobiotic effects on monoamine homeostasis in the placenta.
- MeSH
- biologický transport MeSH
- dopamin * metabolismus farmakologie MeSH
- krysa rodu rattus MeSH
- maternofetální výměna látek MeSH
- noradrenalin metabolismus MeSH
- placenta * metabolismus MeSH
- těhotenství MeSH
- trofoblasty metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The following post aims to introduce a project supported by the Technology Agency of the Czech Republic, which dealt with the production and testing of audiotactile maps. These maps are used to help people with severe visual impairment explore space. The project focused on the 3D printing of map bases and their connection to tablets through conductive map parts. This resulted in aids that were not only based on touch but also on hearing. These aids continue to serve not only adults with visual impairments but also pupils with visual impairments and are intended to convey the space in a particular location and orientation within it.
BACKGROUND: Three primary monoamines-serotonin, norepinephrine, and dopamine-play major roles in the placenta-fetal brain axis. Analogously to the brain, the placenta has transport mechanisms that actively take up these monoamines into trophoblast cells. These transporters are known to play important roles in the differentiated syncytiotrophoblast layer, but their status and activities in the undifferentiated, progenitor cytotrophoblast cells are not well understood. Thus, we have explored the cellular handling and regulation of monoamine transporters during the phenotypic transitioning of cytotrophoblasts along the villous pathway. METHODS: Experiments were conducted with two cellular models of syncytium development: primary trophoblast cells isolated from the human term placenta (PHT), and the choriocarcinoma-derived BeWo cell line. The gene and protein expression of membrane transporters for serotonin (SERT), norepinephrine (NET), dopamine (DAT), and organic cation transporter 3 (OCT3) was determined by quantitative PCR and Western blot analysis, respectively. Subsequently, the effect of trophoblast differentiation on transporter activity was analyzed by monoamine uptake into cells. RESULTS: We present multiple lines of evidence of changes in the transcriptional and functional regulation of monoamine transporters associated with trophoblast differentiation. These include enhancement of SERT and DAT gene and protein expression in BeWo cells. On the other hand, in PHT cells we report negative modulation of SERT, NET, and OCT3 protein expression. We show that OCT3 is the dominant monoamine transporter in PHT cells, and its main functional impact is on serotonin uptake, while passive transport strongly contributes to norepinephrine and dopamine uptake. Further, we show that a wide range of selective serotonin reuptake inhibitors affect serotonin cellular accumulation, at pharmacologically relevant drug concentrations, via their action on both OCT3 and SERT. Finally, we demonstrate that BeWo cells do not well reflect the molecular mechanisms and properties of healthy human trophoblast cells. CONCLUSIONS: Collectively, our findings provide insights into the regulation of monoamine transport during trophoblast differentiation and present important considerations regarding appropriate in vitro models for studying monoamine regulation in the placenta.
The human placenta represents a unique non-neuronal site of monoamine transporter expression, with pathophysiological relevance during the prenatal period. Monoamines (serotonin, dopamine, norepinephrine) are crucial neuromodulators for proper placenta functions and fetal development, including cell proliferation, differentiation, and neuronal migration. Accumulating evidence suggests that even a transient disruption of monoamine balance during gestation may lead to permanent changes in the fetal brain structures and functions, projecting into adulthood. Nonetheless, little is known about the transfer of dopamine and norepinephrine across the placental syncytiotrophoblast. Employing the method of isolated membranes from the human term placenta, here we delineate the transport mechanisms involved in dopamine and norepinephrine passage across the apical microvillous (MVM) and basal membranes. We show that the placental uptake of dopamine and norepinephrine across the mother-facing MVM is mediated via the high-affinity and low-capacity serotonin (SERT/SLC6A4) and norepinephrine (NET/SLC6A2) transporters. In the fetus-facing basal membrane, however, the placental uptake of both monoamines is controlled by the organic cation transporter 3 (OCT3/SLC22A3). Our findings thus provide insights into physiological aspects of dopamine and norepinephrine transport across both the maternal and fetal sides of the placenta. As monoamine transporters represent targets for several neuroactive drugs such as antidepressants, our findings are pharmacologically relevant to ensure the safety of drug use during pregnancy.
- MeSH
- buněčná membrána metabolismus MeSH
- dopamin metabolismus MeSH
- dospělí MeSH
- lidé MeSH
- membránové transportní proteiny pro serotonin metabolismus MeSH
- noradrenalin metabolismus MeSH
- placenta * metabolismus MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- trofoblasty * metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH