The pungency of chili peppers, the most popular hot spice used worldwide, is caused by capsaicinoids (CPDs), the content of which can vary greatly due to varietal differences and growing conditions. For the first time, a novel simple method for the fast determination of CPDs in chili peppers and chili products was developed based on adsorptive transfer cyclic square-wave voltammetry (AdTCSWV), using adsorption of lipophilic CPDs on an unmodified glassy carbon electrode surface from methanolic extracts of chili pepper samples. The CSWV is based on short oxidation of adsorbed CPDs to quinoid products, and their subsequent reduction and re-oxidation to provide specific analytical signals with a linear range from 0.05 to 1.00 mg L-1. This principle was also implemented in tandem coulometric and amperometric detection of CPDs after HPLC separation. The two-step electrochemical detection provides increased selectivity for CPDs in case of CPDs co-elution with other electrochemically oxidizable components that cannot be reversibly reduced.
In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.
- MeSH
- antitumorózní látky * farmakologie chemie MeSH
- dusík * chemie MeSH
- fluorescenční barviva chemie MeSH
- grafit * chemie MeSH
- kapsaicin * chemie farmakologie MeSH
- kvantové tečky * chemie terapeutické užití MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nanočástice * chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- teranostická nanomedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Chili has culinary as well as medical importance. Studies in humans, using a wide range of doses of chili intake (varying from a single meal to a continuous uptake for up to 12 weeks), concluded that it facilitates weight loss. In regard to this, the main targets of chili are fat metabolism, energy expenditure, and thermogenesis. To induce weight loss, the active substance of chili, capsaicin, activates Transient Receptor Potential Cation Channel sub-family V member 1 (TRPV1) channels) receptors causing an increase in intracellular calcium levels and triggering the sympathetic nervous system. Apart from TRPV1, chili directly reduces energy expenditure by activating Brown Adipose Tissue. Weight loss by chili is also the result of an improved control of insulin, which supports weight management and has positive effects for treatment for diseases like obesity, diabetes and cardiovascular disorders. This review summarizes the major pathways by which chili contributes to ameliorating parameters that help weight management and how the consumption of chili can help in accelerating weight loss through dietary modifications.
- MeSH
- Capsicum chemie MeSH
- hmotnostní úbytek účinky léků MeSH
- kapsaicin chemie farmakologie MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH