Herein, we describe an ultrasensitive specific biosensing system for detection of sarcosine as a potential biomarker of prostate carcinoma based on Förster resonance energy transfer (FRET). The FRET biosensor employs anti-sarcosine antibodies immobilized on paramagnetic nanoparticles surface for specific antigen binding. Successful binding of sarcosine leads to assembly of a sandwich construct composed of anti-sarcosine antibodies keeping the Förster distance (Ro) of FRET pair in required proximity. The detection is based on spectral overlap between gold-functionalized green fluorescent protein and antibodies@quantum dots bioconjugate (λex 400 nm). The saturation curve of sarcosine based on FRET efficiency (F₆₀₄/F₅₁₀ ratio) was tested within linear dynamic range from 5 to 50 nM with detection limit down to 50 pM. Assembled biosensor was then successfully employed for sarcosine quantification in prostatic cell lines (PC3, 22Rv1, PNT1A), and urinary samples of prostate adenocarcinoma patients.
- MeSH
- Dextrans chemistry ultrastructure MeSH
- Humans MeSH
- Magnetite Nanoparticles chemistry ultrastructure MeSH
- Molecular Imaging methods MeSH
- Antibodies, Monoclonal chemistry immunology MeSH
- Biomarkers, Tumor analysis MeSH
- Cell Line, Tumor MeSH
- Prostatic Neoplasms chemistry diagnosis immunology MeSH
- Nanocapsules chemistry ultrastructure MeSH
- Reproducibility of Results MeSH
- Fluorescence Resonance Energy Transfer methods MeSH
- Sarcosine analysis immunology MeSH
- Sensitivity and Specificity MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH