Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.
- MeSH
- aktivace enzymů genetika MeSH
- buněčné jádro metabolismus MeSH
- chromatin metabolismus MeSH
- cyklin A2 genetika metabolismus MeSH
- cyklin-dependentní kinasa 2 nedostatek genetika MeSH
- cytoplazma metabolismus MeSH
- fosforylace genetika MeSH
- G2 fáze genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- mitóza genetika MeSH
- poškození DNA genetika MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteinkinasa CDC2 nedostatek genetika MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogenní proteiny metabolismus MeSH
- S fáze genetika MeSH
- signální transdukce genetika MeSH
- transfekce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.
- MeSH
- buněčný cyklus genetika fyziologie MeSH
- chromatin metabolismus MeSH
- G2 fáze genetika MeSH
- histony metabolismus MeSH
- HL-60 buňky MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- nukleozomy metabolismus MeSH
- replikace DNA genetika fyziologie MeSH
- S fáze genetika MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cajal bodies are important nuclear structures containing proteins that preferentially regulate RNA-related metabolism. We investigated the cell-type specific nuclear distribution of Cajal bodies and the level of coilin, a protein of Cajal bodies, in non-irradiated and irradiated human tumor cell lines and embryonic stem (ES) cells. Cajal bodies were localized in different nuclear compartments, including DAPI-poor regions, in the proximity of chromocenters, and adjacent to nucleoli. The number of Cajal bodies per nucleus was cell cycle-dependent, with higher numbers occurring during G2 phase. Human ES cells contained a high coilin level in the nucleoplasm, but coilin-positive Cajal bodies were also identified in nuclei of mouse and human ES cells. Coilin, but not SMN, recognized UVA-induced DNA lesions, which was cell cycle-independent. Treatment with γ-radiation reduced the localized movement of Cajal bodies in many cell types and GFP-coilin fluorescence recovery after photobleaching was very fast in nucleoplasm in comparison with GFP-coilin recovery in DNA lesions. By contrast, nucleolus-localized coilin displayed very slow fluorescence recovery after photobleaching, which indicates very slow rates of protein diffusion, especially in nucleoli of mouse ES cells.
- MeSH
- buněčné jádro genetika metabolismus účinky záření MeSH
- buněčné linie MeSH
- buňky K562 MeSH
- Cajalova tělíska genetika metabolismus účinky záření MeSH
- DNA genetika účinky záření MeSH
- G2 fáze genetika MeSH
- HeLa buňky MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- ultrafialové záření škodlivé účinky MeSH
- záření gama škodlivé účinky MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.
- MeSH
- bleomycin farmakologie MeSH
- buněčný cyklus účinky léků genetika MeSH
- Chlorophyta MeSH
- floxuridin farmakologie MeSH
- G2 fáze genetika MeSH
- kofein farmakologie MeSH
- oprava DNA účinky léků MeSH
- poškození DNA fyziologie MeSH
- proteiny buněčného cyklu MeSH
- Scenedesmus cytologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The p53 protein can control cell cycle progression, programmed cell death, and differentiation of many cell types. Ectopic expression of p53 can resume capability of cell cycle arrest, differentiation, and apoptosis in various leukemic cell lines. In this work, we expressed human p53 protein in v-Myb-transformed chicken monoblasts. We found that even this protein possessing only 53% amino acid homology to its avian counterpart can significantly alter morphology and physiology of these cells causing the G2-phase cell cycle arrest and early monocytic differentiation. Our results document that the species-specific differences of the p53 molecules, promoters/enhancers, and co-factors in avian and human cells do not interfere with differentiation- and cell cycle arrest promoting capabilites of the p53 tumor suppressor even in the presence of functional v-Myb oncoprotein. The p53-induced differentiation and cell cycle arrest of v-Myb-transformed monoblasts are not associated with apoptosis suggesting that the p53-driven pathways controlling apoptosis and differentiation/proliferation are independent.
- MeSH
- apoptóza genetika MeSH
- buněčná diferenciace fyziologie genetika MeSH
- buněčný cyklus genetika MeSH
- financování organizované MeSH
- G2 fáze genetika MeSH
- inhibitory růstu fyziologie genetika MeSH
- kur domácí MeSH
- lidé MeSH
- monocyty cytologie MeSH
- nádorový supresorový protein p53 fyziologie genetika MeSH
- onkogenní proteiny v-myb genetika MeSH
- proliferace buněk MeSH
- signální transdukce genetika MeSH
- transfekce MeSH
- transformované buněčné linie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH