The ability of Diplodia pinea to inhibit Armillaria sp., Bjerkandera adusta, Botrytis cinerea, and Rhizoctonia sp. mycelium growth was analyzed using the double-culture method. Wild-type fungal strains were incubated in a biochemical oxygen demand incubator using potato agar dextrose medium at 24 ± 2 °C for 35 days in darkness. D. pinea significantly inhibited the growth of all fungi species tested (30.75 to 98.37% inhibition) and showed moderate antagonistic activity (antagonistic index, 14.5). Chemical analysis of D. pinea culture broth extracts revealed steroids, triterpenes, and phenolic compounds. Alkaloids were qualitatively detected in the mycelium crude extract. The presence of these compounds may be related to the antagonistic activity observed. The inhibition ability of D. pinea is due to competition with the tested fungi for substrate and space.
- MeSH
- alkaloidy chemie MeSH
- antibióza * MeSH
- Ascomycota růst a vývoj fyziologie MeSH
- Botrytis růst a vývoj fyziologie MeSH
- kultivační média chemie MeSH
- kyslík metabolismus MeSH
- mycelium růst a vývoj fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- triterpeny chemie MeSH
- Publikační typ
- časopisecké články MeSH
Terrestrial plants typically take up nutrients through roots or mycorrhizae while freshwater plants additionally utilize leaves. Their nutrient uptake may be enhanced by root hairs whose occurrence is often negatively correlated with mycorrhizal colonization. Seagrasses utilize both leaves and roots and often form root hairs, but seem to be devoid of mycorrhizae. The Mediterranean seagrass Posidonia oceanica is an exception: its adults commonly lack root hairs and regularly form a specific association with a single pleosporalean fungus. Here we show that at two sites in the southern Adriatic, all its seedlings possessed abundant root hairs with peculiar morphology (swollen terminal parts) and anatomy (spirally formed cell walls) as apparent adaptations for better attachment to the substrate and increase of breaking strain. Later on, their roots became colonized by dark septate mycelium while root hairs were reduced. In adults, most of terminal fine roots possessed the specific fungal association while root hairs were absent. These observations indicate for the first time that processes regulating transition from root hairs to root fungal colonization exist also in some seagrasses. This ontogenetic shift in root traits may suggests an involvement of the specific root symbiosis in the nutrient uptake by the dominant Mediterranean seagrass.
- MeSH
- Alismatales anatomie a histologie růst a vývoj mikrobiologie MeSH
- Ascomycota fyziologie MeSH
- fyziologická adaptace * MeSH
- kořeny rostlin mikrobiologie MeSH
- listy rostlin MeSH
- mycelium fyziologie MeSH
- mykorhiza MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středozemní moře MeSH
The effects of inoculation with an arbuscular mycorrhizal (AM) fungus on Cd and Ni tolerance and uptake in Medicago sativa, an AM host, and Sesuvium portulacastrum, a non-host plant, were investigated in a greenhouse experiment. The plants were cultivated in sterilized sand in a two-compartmented system, which prevented root competition but enabled colonization of the whole substrate by AM fungal extraradical mycelium. M. sativa was either left non-inoculated or inoculated with the AM fungus Rhizophagus irregularis, and both plants were either cultivated without heavy metal (HM) addition or supplied with cadmium (Cd) or nickel (Ni), each in two doses. Additional pots with singly cultivated plants were established to control for the effect of the co-cultivation. AM significantly enhanced the growth of M. sativa and substantially increased its uptake of both HMs. The roots of S. portulacastrum became colonized by AM fungal hyphae and vesicles. The presence of the AM fungus in the cultivation system tended to increase the HM uptake of S. portulacastrum, but the effect was less consistent and pronounced than that in M. sativa. We conclude that AM fungal mycelium radiating from M. sativa did not negatively affect the growth and HM uptake of S. portulacastrum. On the contrary, we hypothesize that it stimulated the absorption and translocation of Cd and Ni in the non-host species. Thus, our results suggest that AM fungal mycelium radiating from mycorrhizal plants does not decrease the HM uptake of non-host plants, many of which are considered promising candidate plants for phytoremediation.
- MeSH
- Aizoaceae * metabolismus mikrobiologie MeSH
- Glomeromycota fyziologie MeSH
- kadmium metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- Medicago sativa * metabolismus mikrobiologie MeSH
- mycelium fyziologie MeSH
- mykorhiza fyziologie MeSH
- nikl metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients.
- MeSH
- Bacteria metabolismus MeSH
- biologické modely MeSH
- biomasa MeSH
- bříza mikrobiologie MeSH
- dusík analýza MeSH
- fyziologická adaptace * MeSH
- kořeny rostlin anatomie a histologie mikrobiologie fyziologie MeSH
- mycelium fyziologie MeSH
- mykorhiza fyziologie MeSH
- půdní mikrobiologie MeSH
- rhizosféra MeSH
- tajga * MeSH
- uhlík analýza MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Fungal pathogens are causal agents of numerous human, animal, and plant diseases. They employ various infection modes to overcome host defense systems. Infection mechanisms of different fungi have been subjected to many comprehensive studies. These investigations have been facilitated by the development of various '-omics' techniques, and proteomics has one of the leading roles in this regard. Fungal conidia and sclerotia could be considered the most important structures for pathogenesis as their germination is one of the first steps towards a host infection. They represent interesting objects for proteomic studies because of the presence of unique proteins with unexplored biotechnological potential required for pathogen viability, development and the subsequent host infection. Proteomic peculiarities of survival structures of different fungi, including those of biotechnological significance (e.g., Asperillus fumigatus, A. nidulans, Metarhizium anisopliae), in a dormant state, as well as changes in the protein production during early stages of fungal development are the subjects of the present review. We focused on biological aspects of proteomic studies of fungal survival structures rather than on an evaluation of proteomic approaches. For that reason, proteins that have been identified in this context are discussed from the point of view of their involvement in different biological processes and possible functions assigned to them. This is the first review paper summarizing recent advances in proteomics of fungal survival structures.
- MeSH
- biotechnologie MeSH
- fungální proteiny fyziologie MeSH
- houby růst a vývoj patogenita fyziologie MeSH
- interakce hostitele a patogenu fyziologie MeSH
- lidé MeSH
- mycelium fyziologie MeSH
- proteom fyziologie MeSH
- proteomika metody MeSH
- spory hub fyziologie MeSH
- virulence fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biofilms represent mixed communities present in a diverse range of environments; however, their utility as inoculants is less investigated. Our investigation was aimed towards in vitro development of biofilms using fungal mycelia (Trichoderma viride) as matrices and nitrogen-fixing and P-solubilizing bacteria as partners, as a prelude to their use as biofertilizers (biofilmed biofertilizers, BBs) and biocontrol agents for different crops. The most suitable media in terms of population counts, fresh mass and dry biomass for Trichoderma and Bacillus subtilis/Pseudomonas fluorescens was found to be Pikovskaya broth ± 1 % CaCO(3), while for Trichoderma and Azotobacter chroococcum, Jensen's medium was most optimal. The respective media were then used for optimization of the inoculation rate of the partners in terms of sequence of addition of partners, fresh/dry mass of biofilms and population counts of partners for efficient film formation. Microscopic observations revealed significant differences in the progress of growth of biofilms and dual cultures. In the biofilms, the bacteria were observed growing intermingled within the fungal mycelia mat. Further, biofilm formation was compared under static and shaking conditions and the fresh mass of biofilms was higher in the former. Such biofilms are being further characterized under in vitro conditions, before using them as inoculants with crops.
In all terrestrial ecosystems, testate amoebae (TA) encounter fungi. There are strong indications that both groups engage in multiple interactions, including mycophagy and decomposition of TA shells, processes which might be fundamental in nutrient cycling in certain ecosystems. Here, we present the results of an experiment focusing on interactions between TA and saprotrophic microfungi colonizing Scots pine (Pinus sylvestris L.) litter needles. The needles were collected from a temperate pine forest and cultivated in damp chambers. Over a few weeks, melanized mycelium of Anavirga laxa Sutton started to grow out of some needles; simultaneously, the common forest-soil TA Phryganella acropodia (Hertwig and Lesser) Hopkinson reproduced and spread around the mycelium. We investigated whether a potential relationship between TA and saprotrophic microfungi exists by comparing the composition of TA communities on and around the needles and testing the spatial relationship between the A. laxa mycelium and P. acropodia shells in the experimental microcosm. Additionally, we asked whether P. acropodia utilized the A. laxa mycelium as a nutrient source and screened whether P. acropodia shells were colonized by the microfungi inhabiting the experimental microcosm. Our results indicate that saprotrophic microfungi may affect the composition of TA communities and their mycelium may affect distribution of TA individuals in pine litter. Our observations suggest that P. acropodia did not graze directly on A. laxa mycelium, but rather fed on its exudates or bacteria associated with the exudates. The fungus Pochonia bulbillosa (Gams & Malla) Zare & Gams was often found parasitising encysted shells or decomposing already dead individuals of P. acropodia. TA and pine litter microfungi engage in various direct and indirect interactions which are still poorly understood and deserve further investigation. Their elucidation will improve our knowledge on fundamental processes influencing coexistence of soil microflora and microfauna.
Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.
- MeSH
- alfa-glukosidasy analýza metabolismus MeSH
- Bacteria růst a vývoj MeSH
- Basidiomycota růst a vývoj metabolismus fyziologie MeSH
- biomasa MeSH
- celulosa-1,4-beta-cellobiosidasa analýza metabolismus MeSH
- houby růst a vývoj fyziologie MeSH
- hyfy růst a vývoj MeSH
- mycelium fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- xylosidasy analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH