Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires CTD recognition by the N-terminal domain of Sen1. We provide evidence that the Sen1-CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein-protein interactions that control termination of non-coding transcription by Sen1.
- MeSH
- DNA-helikasy chemie metabolismus MeSH
- fungální RNA metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- nekódující RNA metabolismus MeSH
- proteinové domény MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- regulace genové exprese u hub MeSH
- RNA-helikasy chemie metabolismus MeSH
- RNA-polymerasa II chemie MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- terminace genetické transkripce MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5' reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively.
- MeSH
- 5' nepřekládaná oblast MeSH
- eukaryotický iniciační faktor 3 metabolismus MeSH
- fungální RNA genetika metabolismus MeSH
- iniciace translace peptidového řetězce * MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.
- MeSH
- DNA-dependentní DNA-polymerasy chemie metabolismus MeSH
- exozómy metabolismus MeSH
- fungální RNA metabolismus MeSH
- konformace nukleové kyseliny MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- nekódující RNA metabolismus MeSH
- polyadenylace MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- stabilita RNA MeSH
- terminace genetické transkripce * MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent reports have begun unraveling the details of various roles of individual eukaryotic translation initiation factor 3 (eIF3) subunits in translation initiation. Here we describe functional characterization of two essential Saccharomyces cerevisiae eIF3 subunits, g/Tif35 and i/Tif34, previously suggested to be dispensable for formation of the 48S preinitiation complexes (PICs) in vitro. A triple-Ala substitution of conserved residues in the RRM of g/Tif35 (g/tif35-KLF) or a single-point mutation in the WD40 repeat 6 of i/Tif34 (i/tif34-Q258R) produces severe growth defects and decreases the rate of translation initiation in vivo without affecting the integrity of eIF3 and formation of the 43S PICs in vivo. Both mutations also diminish induction of GCN4 expression, which occurs upon starvation via reinitiation. Whereas g/tif35-KLF impedes resumption of scanning for downstream reinitiation by 40S ribosomes terminating at upstream open reading frame 1 (uORF1) in the GCN4 mRNA leader, i/tif34-Q258R prevents full GCN4 derepression by impairing the rate of scanning of posttermination 40S ribosomes moving downstream from uORF1. In addition, g/tif35-KLF reduces processivity of scanning through stable secondary structures, and g/Tif35 specifically interacts with Rps3 and Rps20 located near the ribosomal mRNA entry channel. Together these results implicate g/Tif35 and i/Tif34 in stimulation of linear scanning and, specifically in the case of g/Tif35, also in proper regulation of the GCN4 reinitiation mechanism.
- MeSH
- aminokyselinové motivy genetika MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- fungální RNA metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- proteosyntéza MeSH
- ribozomální proteiny chemie genetika metabolismus MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- substituce aminokyselin MeSH
- terciární struktura proteinů MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- vazba proteinů MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH