Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
We investigated the effect of temperature on the binding specificity of the recombinant d-trehalose/d-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis (TMBP). Importantly, we found that TMBP can bind d-glucose (Glc). The Glc binding was characterized by means of fluorescence spectroscopy in the temperature range of 25 degrees C-85 degrees C. Our results show that at 25 degrees C the binding of Glc to TMBP is well represented by a bimodal model with apparent K(d) of 20 muM and approximately 3-8 mM for the first and the second binding step, respectively. At 60 degrees C the binding of Glc to TMBP is represented by a simple hyperbolic model with an apparent K(d) value of about 40 muM. Finally, at 85 degrees C Glc did not bind to TMBP. Molecular dynamics (MD) simulations were used to shed light on the molecular mechanism of the Glc binding. Our results suggest that after proper fluorescent labeling TMBP can be used as a highly thermostable and non-consuming analyte biosensor for monitoring the level of glucose in fluids (e.g. human blood) where other sugars are not present.
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications. 2006 Wiley-Liss, Inc.
- MeSH
- časové faktory MeSH
- financování organizované MeSH
- fluorescenční spektrometrie MeSH
- maltosa chemie metabolismus MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- sbalování proteinů MeSH
- spektrofotometrie infračervená MeSH
- substrátová specifita MeSH
- teplota MeSH
- terciární struktura proteinů MeSH
- Thermococcus chemie metabolismus MeSH
- transportní proteiny chemie metabolismus MeSH
- trehalosa chemie metabolismus MeSH
- vazba proteinů MeSH