Programmed cell death ligand (PD-L1)/PD-1 expression has been studied in a variety of cancers and blockage of PD-L1/PD-1 pathway is a cornerstone of immunotherapy. We studied PD-L1/PD-1 immunohistochemical expression in 47 thyroid gland specimens in groups of (1) Hashimoto thyroiditis (HT) only; (2) HT and follicular epithelial dysplasia (FED); and (3) HT, FED, and papillary thyroid carcinoma (PTC). PD-1 positivity was found in immune cells, namely in lymphocytes, macrophages, and plasma cells with mean values for lymphocytes and macrophages 9% in HT group, 4% in FED group, and 4% in PTC group. PD-L1 positivity was identified in both immune cells and in the normal epithelial cells. In the HT group, mean PD-L1 staining on immune cells was 6%, in FED group 5%, and in PTC group 7%. The mean PD-L1 staining on the epithelial cells in the inflammatory parenchyma was 11.7% in HT, 13.4% in FED, and 8.3% in PTC group. The mean PD-L1 staining of FED foci was 47.2% in FED group and 33.6% in PTC group. The mean tumor proportion score (TPS) was 10.4%, and the mean combined positive score (CPS) was 15.5. At the moment, PTC is not a target of immunotherapy. However, understanding the complex issue of concurrent inflammation and autoimmunity can importantly influence the cancer treatment in future.
When individuals breed more than once, parents are faced with the choice of whether to re-mate with their old partner or divorce and select a new mate. Evolutionary theory predicts that, following successful reproduction with a given partner, that partner should be retained for future reproduction. However, recent work in a polygamous bird, has instead indicated that successful parents divorced more often than failed breeders (Halimubieke et al. in Ecol Evol 9:10734-10745, 2019), because one parent can benefit by mating with a new partner and reproducing shortly after divorce. Here we investigate whether successful breeding predicts divorce using data from 14 well-monitored populations of plovers (Charadrius spp.). We show that successful nesting leads to divorce, whereas nest failure leads to retention of the mate for follow-up breeding. Plovers that divorced their partners and simultaneously deserted their broods produced more offspring within a season than parents that retained their mate. Our work provides a counterpoint to theoretical expectations that divorce is triggered by low reproductive success, and supports adaptive explanations of divorce as a strategy to improve individual reproductive success. In addition, we show that temperature may modulate these costs and benefits, and contribute to dynamic variation in patterns of divorce across plover breeding systems.
- MeSH
- biologická evoluce * MeSH
- Charadriiformes fyziologie MeSH
- chov MeSH
- párová vazba MeSH
- rozmnožování fyziologie MeSH
- rozvod MeSH
- sexuální chování zvířat fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.
- MeSH
- Arvicolinae * MeSH
- Bordetella bronchiseptica fyziologie MeSH
- dieta veterinární MeSH
- infekce bakteriemi rodu Bordetella mikrobiologie veterinární MeSH
- náhodné rozdělení MeSH
- nemoci hlodavců mikrobiologie MeSH
- populační dynamika MeSH
- populační růst MeSH
- potravní doplňky analýza MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
Marked variation occurs in both seasonal and multiannual population density peaks of northern European small mammal species, including voles. The availability of dietary proteins is a key factor limiting the population growth of herbivore species. The objective of this study is to investigate the degree to which protein availability influences the growth of increasing vole populations. We hypothesise that the summer growth of folivorous vole populations is positively associated with dietary protein availability. A field experiment was conducted over a summer reproductive period in 18 vegetated enclosures. Populations of field voles (Microtus agrestis) were randomised amongst three treatment groups: 1) food supplementation with ad libitum high protein (30% dry weight) pellets, 2) food supplementation with ad libitum low protein (1% dry weight; both supplemented foods had equivalent energy content) pellets, and 3) control (no food supplementation), n = 6 per treatment. Vole density, survival, demographic attributes and condition indicators were monitored with live-trapping and blood sampling. Highest final vole densities were attained in populations that received high protein supplementation and lowest in low protein populations. Control populations displayed intermediate densities. The survival rate of voles was similar in all treatment groups. The proportion of females, and of those that were pregnant or lactating, was highest in the high protein supplemented populations. This suggests that variation in reproductive, rather than survival rates of voles, accounted for density differences between the treatment groups. We found no clear association between population demography and individual physiological condition. Our results demonstrate that dietary protein availability limits vole population growth during the summer growing season. This suggests that the nutritional quality of forage may be an underestimated source of interannual variation in the density and growth rates of widely fluctuating populations of herbivorous small mammals.
- MeSH
- Arvicolinae růst a vývoj MeSH
- dieta * MeSH
- dietní proteiny analýza MeSH
- hustota populace MeSH
- potravní doplňky MeSH
- roční období * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH