OBJECTIVE: To examine the associations between characteristics of daily rainfall (intensity, duration, and frequency) and all cause, cardiovascular, and respiratory mortality. DESIGN: Two stage time series analysis. SETTING: 645 locations across 34 countries or regions. POPULATION: Daily mortality data, comprising a total of 109 954 744 all cause, 31 164 161 cardiovascular, and 11 817 278 respiratory deaths from 1980 to 2020. MAIN OUTCOME MEASURE: Association between daily mortality and rainfall events with return periods (the expected average time between occurrences of an extreme event of a certain magnitude) of one year, two years, and five years, with a 14 day lag period. A continuous relative intensity index was used to generate intensity-response curves to estimate mortality risks at a global scale. RESULTS: During the study period, a total of 50 913 rainfall events with a one year return period, 8362 events with a two year return period, and 3301 events with a five year return period were identified. A day of extreme rainfall with a five year return period was significantly associated with increased daily all cause, cardiovascular, and respiratory mortality, with cumulative relative risks across 0-14 lag days of 1.08 (95% confidence interval 1.05 to 1.11), 1.05 (1.02 to 1.08), and 1.29 (1.19 to 1.39), respectively. Rainfall events with a two year return period were associated with respiratory mortality only, whereas no significant associations were found for events with a one year return period. Non-linear analysis revealed protective effects (relative risk <1) with moderate-heavy rainfall events, shifting to adverse effects (relative risk >1) with extreme intensities. Additionally, mortality risks from extreme rainfall events appeared to be modified by climate type, baseline variability in rainfall, and vegetation coverage, whereas the moderating effects of population density and income level were not significant. Locations with lower variability of baseline rainfall or scarce vegetation coverage showed higher risks. CONCLUSION: Daily rainfall intensity is associated with varying health effects, with extreme events linked to an increasing relative risk for all cause, cardiovascular, and respiratory mortality. The observed associations varied with local climate and urban infrastructure.
BACKGROUND: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. METHODS: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986-2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. RESULTS: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = -0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = -3.45, P = 0.02) and South Europe (LS = -2.86, P = 0.05). CONCLUSIONS: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Heterogeneity in temperature-mortality relationships across locations may partly result from differences in the demographic structure of populations and their cause-specific vulnerabilities. Here we conduct the largest epidemiological study to date on the association between ambient temperature and mortality by age and cause using data from 532 cities in 33 countries. METHODS: We collected daily temperature and mortality data from each country. Mortality data was provided as daily death counts within age groups from all, cardiovascular, respiratory, or noncardiorespiratory causes. We first fit quasi-Poisson regression models to estimate location-specific associations for each age-by-cause group. For each cause, we then pooled location-specific results in a dose-response multivariate meta-regression model that enabled us to estimate overall temperature-mortality curves at any age. The age analysis was limited to adults. RESULTS: We observed high temperature effects on mortality from both cardiovascular and respiratory causes compared to noncardiorespiratory causes, with the highest cold-related risks from cardiovascular causes and the highest heat-related risks from respiratory causes. Risks generally increased with age, a pattern most consistent for cold and for nonrespiratory causes. For every cause group, risks at both temperature extremes were strongest at the oldest age (age 85 years). Excess mortality fractions were highest for cold at the oldest ages. CONCLUSIONS: There is a differential pattern of risk associated with heat and cold by cause and age; cardiorespiratory causes show stronger effects than noncardiorespiratory causes, and older adults have higher risks than younger adults.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The association between nonoptimal temperatures and cardiovascular mortality risk is recognized. However, a comprehensive global assessment of this burden is lacking. OBJECTIVES: The goal of this study was to assess global cardiovascular mortality burden attributable to nonoptimal temperatures and investigate spatiotemporal trends. METHODS: Using daily cardiovascular deaths and temperature data from 32 countries, a 3-stage analytical approach was applied. First, location-specific temperature-mortality associations were estimated, considering nonlinearity and delayed effects. Second, a multivariate meta-regression model was developed between location-specific effect estimates and 5 meta-predictors. Third, cardiovascular deaths associated with nonoptimal, cold, and hot temperatures for each global grid (55 km × 55 km resolution) were estimated, and temporal trends from 2000 to 2019 were explored. RESULTS: Globally, 1,801,513 (95% empirical CI: 1,526,632-2,202,831) annual cardiovascular deaths were associated with nonoptimal temperatures, constituting 8.86% (95% empirical CI: 7.51%-12.32%) of total cardiovascular mortality corresponding to 26 deaths per 100,000 population. Cold-related deaths accounted for 8.20% (95% empirical CI: 6.74%-11.57%), whereas heat-related deaths accounted for 0.66% (95% empirical CI: 0.49%-0.98%). The mortality burden varied significantly across regions, with the highest excess mortality rates observed in Central Asia and Eastern Europe. From 2000 to 2019, cold-related excess death ratios decreased, while heat-related ratios increased, resulting in an overall decline in temperature-related deaths. Southeastern Asia, Sub-Saharan Africa, and Oceania observed the greatest reduction, while Southern Asia experienced an increase. The Americas and several regions in Asia and Europe displayed fluctuating temporal patterns. CONCLUSIONS: Nonoptimal temperatures substantially contribute to cardiovascular mortality, with heterogeneous spatiotemporal patterns. Effective mitigation and adaptation strategies are crucial, especially given the increasing heat-related cardiovascular deaths amid climate change.
- MeSH
- celosvětové zdraví * MeSH
- kardiovaskulární nemoci * mortalita MeSH
- lidé MeSH
- nízká teplota škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 μm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-μg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.
- MeSH
- dospělí MeSH
- kardiovaskulární nemoci * mortalita MeSH
- látky znečišťující vzduch * škodlivé účinky analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- mortalita trendy MeSH
- nemoci dýchací soustavy mortalita MeSH
- pevné částice * škodlivé účinky analýza MeSH
- senioři MeSH
- strojové učení MeSH
- velkoměsta * epidemiologie MeSH
- vystavení vlivu životního prostředí * škodlivé účinky MeSH
- znečištění ovzduší * škodlivé účinky analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Geografické názvy
- velkoměsta * epidemiologie MeSH
Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.
- MeSH
- globální oteplování * MeSH
- klimatické změny * MeSH
- mortalita MeSH
- nízká teplota MeSH
- teplota MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To evaluate lag-response associations and effect modifications of exposure to floods with risks of all cause, cardiovascular, and respiratory mortality on a global scale. DESIGN: Time series study. SETTING: 761 communities in 35 countries or territories with at least one flood event during the study period. PARTICIPANTS: Multi-Country Multi-City Collaborative Research Network database, Australian Cause of Death Unit Record File, New Zealand Integrated Data Infrastructure, and the International Network for the Demographic Evaluation of Populations and their Health Network database. MAIN OUTCOME MEASURES: The main outcome was daily counts of deaths. An estimation for the lag-response association between flood and daily mortality risk was modelled, and the relative risks over the lag period were cumulated to calculate overall effects. Attributable fractions of mortality due to floods were further calculated. A quasi-Poisson model with a distributed lag non-linear function was used to examine how daily death risk was associated with flooded days in each community, and then the community specific associations were pooled using random effects multivariate meta-analyses. Flooded days were defined as days from the start date to the end date of flood events. RESULTS: A total of 47.6 million all cause deaths, 11.1 million cardiovascular deaths, and 4.9 million respiratory deaths were analysed. Over the 761 communities, mortality risks increased and persisted for up to 60 days (50 days for cardiovascular mortality) after a flooded day. The cumulative relative risks for all cause, cardiovascular, and respiratory mortality were 1.021 (95% confidence interval 1.006 to 1.036), 1.026 (1.005 to 1.047), and 1.049 (1.008 to 1.092), respectively. The associations varied across countries or territories and regions. The flood-mortality associations appeared to be modified by climate type and were stronger in low income countries and in populations with a low human development index or high proportion of older people. In communities impacted by flood, up to 0.10% of all cause deaths, 0.18% of cardiovascular deaths, and 0.41% of respiratory deaths were attributed to floods. CONCLUSIONS: This study found that the risks of all cause, cardiovascular, and respiratory mortality increased for up to 60 days after exposure to flood and the associations could vary by local climate type, socioeconomic status, and older age.
AIMS: We measured the association between a history of incarceration and HIV positivity among people who inject drugs (PWID) across Europe. DESIGN, SETTING AND PARTICIPANTS: This was a cross-sectional, multi-site, multi-year propensity-score matched analysis conducted in Europe. Participants comprised community-recruited PWID who reported a recent injection (within the last 12 months). MEASUREMENTS: Data on incarceration history, demographics, substance use, sexual behavior and harm reduction service use originated from cross-sectional studies among PWID in Europe. Our primary outcome was HIV status. Generalized linear mixed models and propensity-score matching were used to compare HIV status between ever- and never-incarcerated PWID. FINDINGS: Among 43 807 PWID from 82 studies surveyed (in 22 sites and 13 countries), 58.7% reported having ever been in prison and 7.16% (n = 3099) tested HIV-positive. Incarceration was associated with 30% higher odds of HIV infection [adjusted odds ratio (aOR) = 1.32, 95% confidence interval (CI) = 1.09-1.59]; the association between a history of incarceration and HIV infection was strongest among PWID, with the lowest estimated propensity-score for having a history of incarceration (aOR = 1.78, 95% CI = 1.47-2.16). Additionally, mainly injecting cocaine and/or opioids (aOR = 2.16, 95% CI = 1.33-3.53), increased duration of injecting drugs (per 8 years aOR = 1.31, 95% CI = 1.16-1.48), ever sharing needles/syringes (aOR = 1.91, 95% CI = 1.59-2.28) and increased income inequality among the general population (measured by the Gini index, aOR = 1.34, 95% CI = 1.18-1.51) were associated with a higher odds of HIV infection. Older age (per 8 years aOR = 0.84, 95% CI = 0.76-0.94), male sex (aOR = 0.77, 95% CI = 0.65-0.91) and reporting pharmacies as the main source of clean syringes (aOR = 0.72, 95% CI = 0.59-0.88) were associated with lower odds of HIV positivity. CONCLUSIONS: A history of incarceration appears to be independently associated with HIV infection among people who inject drugs (PWID) in Europe, with a stronger effect among PWID with lower probability of incarceration.
- MeSH
- HIV infekce * epidemiologie MeSH
- HIV séropozitivita * MeSH
- intravenózní abúzus drog * epidemiologie MeSH
- lidé MeSH
- průřezové studie MeSH
- tendenční skóre MeSH
- uživatelé drog * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.
- MeSH
- biodiverzita * MeSH
- celosvětové zdraví * MeSH
- lidé MeSH
- těhotenství MeSH
- teplota MeSH
- velkoměsta MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Austrálie MeSH
- velkoměsta MeSH