"17-16614S"
Dotaz
Zobrazit nápovědu
BACKGROUND: Sunitinib and pazopanib are both oral small molecule multityrosine kinase inhibitors (MTKI) used in the treatment of renal cell carcinoma (RCC). Hepatotoxicity or "liver injury" is the most important adverse effect of pazopanib administration, but little is known about the underlying mechanism. Liver injury may also occur in patients treated with sunitinib, but severe toxicity is extremely rare. Herein we report two new cases of severe liver injury induced by MTKI. Both cases are unique and exceptional. We assessed both cases for drug-induced liver injury (DILI) using the updated score Roussel Uclaf causality assessment method (RUCAM). The literature on potential pathogenic mechanisms and precautionary measures is reviewed. CASE PRESENTATION: A case of a metastatic RCC (mRCC) patient treated with pazopanib who had manifestation of severe liver injury is presented. These manifestations consisted of grade 4 alanine aminotransferase (ALT) increase and grade 4 hyperbilirubinemia. Alternate causes of acute or chronic liver disease were excluded. The patient gradually recovered from the liver injury and refused any further therapy for mRCC. The patient was diagnosed with acute myeloid leukemia (AML) two years later and eventually succumbed to the disease. The second case describes a mRCC patient treated with sunitinib for 3,5 years and fatal liver failure after 2 weeks of clarithromycin co-medication for acute bronchitis. CONCLUSIONS: Liver injury has been commonly observed in TKI-treated patients with unpredictable course. Management requires regular routine liver enzyme-monitoring and the collaboration of medical oncologist and hepatologist. There is an unmet medical need for a risk stratification and definition of predictive biomarkers to identify potential genetic polymorphisms or other factors associated with TKI-induced liver injury. Any potential unrecommended concomitant therapy has to be avoided.
- MeSH
- chronické poškození jater způsobené chemickými látkami * MeSH
- karcinom z renálních buněk * farmakoterapie MeSH
- lékové postižení jater * etiologie MeSH
- lidé MeSH
- nádory ledvin * farmakoterapie MeSH
- tyrosin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- přehledy MeSH
Lysosomal sequestration of weak base drugs has been identified as one of the stress-related mechanisms that trigger in vitro lysosomal biogenesis controlled by transcription factor EB (TFEB). Whether such mechanism can induce lysosomal biogenesis in vivo is unknown. In this study, we addressed the question whether prolonged treatment with sunitinib (SUN) in patients with advanced renal cell carcinoma (n = 22) and with imatinib (IM) in those with gastrointestinal stromal tumor (n = 6) could induce lysosomal biogenesis in leukocytes. Lysosomal biogenesis was monitored using immunoblotting of three lysosomal membrane proteins: lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) and vacuolar H+-ATPase, B2 subunit (ATP6V1B2). Present results indicate that prolonged treatment with SUN affects LAMP1 and LAMP2 expression only marginally in most patients. In contrast, changes in ATP6V1B2 expression were marked and resembled irregular oscillations. Very similar changes in the expression of lysosomal membrane proteins were also found in IM-treated patients. Conclusion: prolonged treatment of cancer patients with SUN and IM did not induce leucocyte lysosomal biogenesis but dramatically affected expression of ATP6V1B2.
- MeSH
- gastrointestinální stromální tumory farmakoterapie metabolismus MeSH
- imatinib mesylát terapeutické užití MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- karcinom z renálních buněk farmakoterapie metabolismus MeSH
- leukocyty metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- membránové glykoproteiny asociované s lyzozomy metabolismus MeSH
- sunitinib terapeutické užití MeSH
- transkripční faktory BHLH-Zip metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lysosomal sequestration of anticancer therapeutics lowers their cytotoxic potential, reduces drug availability at target sites, and contributes to cancer resistance. Only recently has it been shown that lysosomal sequestration of weak base drugs induces lysosomal biogenesis mediated by activation of transcription factor EB (TFEB) which, in turn, enhances their accumulation capacity, thereby increasing resistance to these drugs. Here, we addressed the question of whether lysosomal biogenesis is the only mechanism that increases lysosomal sequestration capacity. We found that lysosomal sequestration of some tyrosine kinase inhibitors (TKIs), gefitinib (GF) and imatinib (IM), induced expansion of the lysosomal compartment. However, an expression analysis of lysosomal genes, including lysosome-associated membrane proteins 1, 2 (LAMP1, LAMP2), vacuolar ATPase subunit B2 (ATP6V1B2), acid phosphatase (ACP), and galactosidase beta (GLB) controlled by TFEB, did not reveal increased expression. Instead, we found that both studied TKIs, GF and IM, induced lysosomal fusion which was dependent on nicotinic acid adenine dinucleotide phosphate (NAADP) mediated Ca2+signaling. A theoretical analysis revealed that lysosomal fusion is sufficient to explain the enlargement of lysosomal sequestration capacity. In conclusion, we demonstrated that extracellular TKIs, GF and IM, induced NAADP/Ca2+ mediated lysosomal fusion, leading to enlargement of the lysosomal compartment with significantly increased sequestration capacity for these drugs without apparent lysosomal biogenesis.
- MeSH
- biogeneze organel MeSH
- buňky K562 MeSH
- chemorezistence účinky léků MeSH
- gefitinib farmakologie MeSH
- imatinib mesylát farmakologie MeSH
- lidé MeSH
- lyzozomy účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- signální transdukce účinky léků MeSH
- transkripční faktory BHLH-Zip účinky léků metabolismus MeSH
- tyrosinkinasy antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH