"19-20728Y" Dotaz Zobrazit nápovědu
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
The Ca2+ sensor STIM1 and the Ca2+ channel Orai1 that form the store-operated Ca2+ (SOC) channel complex are key targets for drug development. Selective SOC inhibitors are currently undergoing clinical evaluation for the treatment of auto-immune and inflammatory responses and are also deemed promising anti-neoplastic agents since SOC channels are linked with enhanced cancer cell progression. Here, we describe an investigation of the site of binding of the selective inhibitor Synta66 to the SOC channel Orai1 using docking and molecular dynamics simulations, and live cell recordings. Synta66 binding was localized to the extracellular site close to the transmembrane (TM)1 and TM3 helices and the extracellular loop segments, which, importantly, are adjacent to the Orai1-selectivity filter. Synta66-sensitivity of the Orai1 pore was, in fact, diminished by both Orai1 mutations affecting Ca2+ selectivity and permeation of Na+ in the absence of Ca2+. Synta66 also efficiently blocked SOC in three glioblastoma cell lines but failed to interfere with cell viability, division and migration. These experiments provide new structural and functional insights into selective drug inhibition of the Orai1 Ca2+ channel by a high-affinity pore blocker.
- Publikační typ
- časopisecké články MeSH
Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.
- MeSH
- autofagie * MeSH
- kationty dvojmocné metabolismus MeSH
- konformace proteinů, alfa-helix MeSH
- lidé MeSH
- motivy EF-ruky MeSH
- mutace MeSH
- myopatie strukturální vrozené genetika metabolismus MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- rozbalení proteinů MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH