Biofilters
Dotaz
Zobrazit nápovědu
The aim of this study was to evaluate the treatment of organic-carbon-deficient wastewater containing benzotriazole (BTA) in lab-scale aerated biofilters filled with natural manganese oxide ore, sand coated with synthetic manganese oxides and sand (as a control material) in terms of BTA removal efficiency, its transformation products and ecotoxicological impact of the treated wastewater. Additionally, the effect of Mn(II) feeding was tested. The removal of BTA in all the biofilters was ≥97%. The contribution of the biotic removal of this compound was 15%, 50%, and 75% in the systems filled with sand, synthetic and natural manganese oxides, respectively. Only the columns filled with natural manganese oxides provided significant removal of DOC and decrease of UV254 and SUVA254, with even more pronounced effect with Mn(II) feeding. The presence of Mn(II) was also found to enhance the removal of NNH4 in the systems filled with either form of manganese oxides, otherwise the removal of NNH4 was negligible or negative. The transformation reactions of BTA were methylation, hydroxylation, and triazole ring cleavage. Based on the number of compounds and their relative abundance, the methylated transformation products were predominant in the effluent. The reduction of the ecotoxicity (Microtox bioassay) of the effluents was positively correlated with the decrease of UV254, SUVA and DOC and only moderately with the removal of BTA. This study has shown that the natural manganese oxide ore provides the broadest set of services as a filtering material for aerated biofilters treating carbon-deficient wastewater containing BTA.
- MeSH
- čištění vody metody MeSH
- mangan chemie MeSH
- odpadní voda chemie MeSH
- oxidy MeSH
- sloučeniny manganu MeSH
- triazoly izolace a purifikace MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
Wetland plants are considered as suitable biofilters for the removal of metal(loid)s and other contaminants from waters and wastewaters, due to their ability to accumulate and retain the contaminants in their roots. The iron plaque (IP) on the root surface influences the metal(loid)s retention processes. The stimulation of the IP development on roots of Phragmites australis by the external supply of a novel synthetic nanomaterial (nanomaghemite, nFe2O3) and FeSO4 (alone or in combination) was studied. An hydroponic experiment was carried out to evaluate the iron plaque formation after external iron addition, as well as their influence on arsenic immobilization capacity. Microscopic and spectroscopic techniques were utilized to assess the distribution of Fe and As in the roots. The addition of Fe stimulated the generation of the IP, especially when FeSO4 was involved. The nanoparticles alone were not efficient with regard to IP formation or As adsorption, even though they adhered to the root surface and did not enter into epithelial root cells. The combination of FeSO4 and nFe2O3 was the most effective treatment for improving the As removal capacity, and it seems to be an effective way to enhance the rhizofiltration potential of P. australis in As contaminated (waste)waters.
- MeSH
- arsen metabolismus MeSH
- biodegradace MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- hydroponie MeSH
- kořeny rostlin metabolismus MeSH
- lipnicovité metabolismus MeSH
- mokřady MeSH
- nanočástice MeSH
- železité sloučeniny metabolismus MeSH
- železnaté sloučeniny analýza MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko MeSH
A 2:1 (w/w) mixture of styrene (STY) and acetone (AC) was subjected to lab-scale biofiltration under varied loading in both a trickle bed reactor (TBR) and biofilter (BF) to investigate substrate interactions and determine the limits of biofiltration efficiency of typical binary air pollutant mixtures containing both hydrophobic and polar components. A comparison of the STY/AC mixture degradation in the TBR and BF revealed higher pollutant removal efficiencies and degradation rates in the TBR, with the pollutant concentrations increasing up to the overloading limit. The maximum styrene degradation rates were 12 and 8 gc m(-3) h(-1) for the TBR and BF, respectively. However, the order of performance switched in favor of the BF when the loading was conducted by increasing air flow rate while keeping the inlet styrene concentration (Cin) constant in contrast to loading by increasing Cin. This switch may be due to a drastic difference in the effective surface area between these two reactors, so the biofilter becomes the reactor of choice when the rate-limiting step switches from biochemical processes to mass transfer by changing the loading mode. The presence of acetone in the mixture decreased the efficiency of styrene degradation and its degradation rate at high loadings. When the overloading was lifted by lowering the pollutant inlet concentrations, short-term back-stripping of both substrates in both reactors into the outlet air was observed, with a subsequent gradual recovery taking several hours and days in the BF and TBR, respectively. Removal of excess biomass from the TBR significantly improved the reactor performance. Identification of the cultivable strains, which was performed on Day 763 of continuous operation, showed the presence of 7 G(-) bacteria, 2 G(+) bacteria and 4 fungi. Flies and larvae of Lycoriella nigripes survived half a year of the biofilter operation by feeding on the biofilm resulting in the maintenance of a nearly constant pressure drop.
- MeSH
- aceton chemie MeSH
- bioreaktory * MeSH
- filtrace metody MeSH
- látky znečišťující vzduch chemie MeSH
- lidé MeSH
- styren chemie MeSH
- znečištění ovzduší prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.
- MeSH
- benzin * MeSH
- biodegradace MeSH
- biofilmy * MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- filtrace MeSH
- fyziologie bakterií * MeSH
- houby fyziologie MeSH
- regenerace a remediace životního prostředí metody MeSH
- uhlovodíky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.
Steady-state performances of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing inlet concentrations of polar solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and n-butyl acetate, were investigated, along with the system's dynamic responses. Throughout the entire experimentation time, a constant loading rate of aromatic components of 4 g(c)·m(-3)·h(-1) was maintained to observe the interactions between the polar substrates and aromatic hydrocarbons. Under low combined substrate loadings, the BF outperformed TBR not only in the removal of aromatic hydrocarbons but also in the removal of polar substrates. However, increasing the loading rate of polar components above the threshold value of 31-36 g(c)·m(-3)·h(-1) resulted in a steep and significant drop in the removal efficiencies of both polar (except for butyl acetate) and hydrophobic components, which was more pronounced in the BF; so the relative TBR/BF efficiency became reversed under such overloading conditions. A step-drop of the overall OL(POLAR) (combined loading by polar air pollutants) from overloading values to 7 g(c)·m(-3)·h(-1) resulted in an increase of all pollutant removal efficiencies, although in TBR the recovery was preceded by lag periods lasting between 5 min (methyl ethyl ketone) to 3.7 h (acetone). The occurrence of lag periods in the TBR recovery was, in part, due to the saturation of mineral medium with water-soluble polar solvents, particularly, acetone. The observed bioreactor behavior was consistent with the biological steps being rate-limiting.
- MeSH
- acetáty metabolismus MeSH
- aromatické uhlovodíky chemie MeSH
- Bacteria metabolismus MeSH
- biodegradace MeSH
- bioreaktory mikrobiologie MeSH
- chromatografie plynová MeSH
- filtrace metody MeSH
- ketony metabolismus MeSH
- kinetika MeSH
- látky znečišťující vzduch metabolismus MeSH
- rozpouštědla MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Steady-state performance characteristics of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing toluene/xylenes inlet concentrations while maintaining a constant loading rate of hydrophilic components (methyl ethyl and methyl isobutyl ketones, acetone, and n-butyl acetate) of 4 g m⁻³ h⁻¹ were evaluated and compared, along with the systems' dynamic responses. At the same combined substrate loading of 55 g m⁻³ h⁻¹ for both reactors, the TBR achieved more than 1.5 times higher overall removal efficiency (RE(W)) than the BF. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also inhibited at higher loads of aromatics, thus revealing a competition in cell catabolism. A step-drop in loading of aromatics resulted in an immediate increase of RE(W) with variations in the TBR, while the new steady-state value in the BF took 6-7 h to achieve. The TBR consistently showed a greater performance than BF in removing toluene and xylenes. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also lower at higher OL(AROM), revealing a competition in the cell catabolism. The results obtained are consistent with the proposed hypothesis of greater toxic effects under low water content, i.e., in the biofilter, caused by aromatic hydrocarbons in the presence of polar ketones and esters, which may improve the hydrocarbon partitioning into the aqueous phase.
- MeSH
- acetáty chemie MeSH
- aceton chemie MeSH
- Bacteria metabolismus MeSH
- biodegradace MeSH
- bioreaktory MeSH
- filtrace metody MeSH
- nátěrové hmoty MeSH
- průmyslová mikrobiologie metody MeSH
- rozpouštědla chemie MeSH
- toluen chemie MeSH
- xyleny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Two-stage biofilters (using perlite and granular activated carbon, GAC, as packing materials) were used for the removal of several linear, branched, and cyclic C(5)-C(8)saturated aliphatic hydrocarbons from air, both as individual chemicals and in mixtures. The acclimation of biofilters from styrene to n-heptane was complete in 14-18 days. The substrate switch resulted in significant changes in pH and microbial composition of biofilters. Subsequent experiments were conducted under steady state conditions at a constant EBRT of 123 s and near-neutral pH, assuring the predominantly bacterial (as opposed to fungal) biofilter population. n-Heptane was removed with consistently high, 87-100%, removal efficiencies (RE) for up to 16 g x m(-3) x h(-1) critical substrate loads in the perlite biofilter, while n-hexane and n-pentane exhibited significantly lower RE under similar conditions. The REs for iso-octane and cyclohexane were less than 10% under similar loads; n-heptane biodegradation was consistently ca. 10% lower in the presence of iso-octane than in its absence. The GAC biofilter showed a significantly lower efficiency than the perlite biofilter (the critical load, yielding RE > 90%, was only 5 g x m(-3) x h(-1) for n-heptane). Evidence obtained indicates that the rate limiting step for mixed culture biofiltration of aliphatic hydrocarbon mixtures is biodegradation rather than mass transfer.
Microbial isolates from biofilters and petroleum-polluted bioremediation sites were screened for the presence of enantioselective epoxide hydrolases active towards tert-butyl glycidyl ether, benzyl glycidyl ether, and allyl glycidyl ether. Out of 270 isolated strains, which comprised bacteria, yeasts, and filamentous fungi, four were selected based on the enantioselectivities of their epoxide hydrolases determined in biotransformation reactions. The enzyme of Aspergillus niger M200 preferentially hydrolyses (S)-tert-butyl glycidyl ether to (S)-3-tert-butoxy-1,2-propanediol with a relatively high enantioselectivity (the enantiomeric ratio E is about 30 at a reaction temperature of 28 degrees C). Epoxide hydrolases of Rhodotorula mucilaginosa M002 and Rhodococcus fascians M022 hydrolyse benzyl glycidyl ether with relatively low enantioselectivities, the former reacting predominantly with the (S)-enantiomer, the latter preferring the (R)-enantiomer. Enzymatic hydrolysis of allyl glycidyl ether by Cryptococcus laurentii M001 proceeds with low enantioselectivity (E=3). (R)-tert-Butyl glycidyl ether with an enantiomeric excess (ee) of over 99%, and (S)-3-tert-butoxy-1,2-propanediol with an ee-value of 86% have been prepared on a gram-scale using whole cells of A. niger M200. An enantiomeric ratio of approximately 100 has been determined under optimised biotransformation conditions with the partially purified epoxide hydrolase from A. niger M200. The regioselectivity of this enzyme was determined to be total for both (S)-tert-butyl glycidyl ether and (R)-tert-butyl glycidyl ether.
- MeSH
- Aspergillus niger enzymologie MeSH
- bakteriální proteiny metabolismus MeSH
- biotransformace MeSH
- epoxid hydrolasy metabolismus MeSH
- epoxidové sloučeniny chemie metabolismus MeSH
- financování organizované MeSH
- fungální proteiny metabolismus MeSH
- grampozitivní bakterie enzymologie izolace a purifikace MeSH
- hydrolýza MeSH
- substrátová specifita MeSH