Multitarget compounds
Dotaz
Zobrazit nápovědu
We discovered a small series of hit compounds that show multitargeting activities against key targets in Alzheimer's disease (AD). The compounds were designed by combining the structural features of the anti-AD drug donepezil with clioquinol, which is able to chelate redox-active metals, thus decreasing metal-driven oxidative phenomena and β-amyloid (Aβ)-mediated neurotoxicity. The majority of the new hybrid compounds selectively target human butyrylcholinesterase at micromolar concentrations and effectively inhibit Aβ self-aggregation. In addition, compounds 5-chloro-7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline (1 b), 7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline (2 b), and 7-(((1-benzylpiperidin-4-yl)amino)methyl)-5-chloro-8-hydroxyquinoline (3 a) are able to chelate copper(II) and zinc(II) and exert antioxidant activity in vitro. Importantly, in the case of 2 b, the multitarget profile is accompanied by high predicted blood-brain barrier permeability, low cytotoxicity in T67 cells, and acceptable toxicity in HUVEC primary cells.
- MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- amyloidní beta-protein antagonisté a inhibitory metabolismus MeSH
- antioxidancia chemie terapeutické užití toxicita MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- chelátory chemie MeSH
- cholinesterasové inhibitory chemie terapeutické užití toxicita MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- hematoencefalická bariéra metabolismus MeSH
- indany chemie terapeutické užití toxicita MeSH
- jodchlorhydroxychin chemie terapeutické užití toxicita MeSH
- lidé MeSH
- měď chemie MeSH
- nádorové buněčné linie MeSH
- oxychinolin chemie terapeutické užití toxicita MeSH
- piperidiny chemie terapeutické užití toxicita MeSH
- racionální návrh léčiv MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zinek chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Since 2002, no clinical candidate against Alzheimer's disease has reached the market; hence, an effective therapy is urgently needed. We followed the so-called "multitarget directed ligand" approach and designed 36 novel tacrine-phenothiazine heterodimers which were in vitro evaluated for their anticholinesterase properties. The assessment of the structure-activity relationships of such derivatives highlighted compound 1dC as a potent and selective acetylcholinesterase inhibitor with IC50 = 8 nM and 1aA as a potent butyrylcholinesterase inhibitor with IC50 = 15 nM. Selected hybrids, namely, 1aC, 1bC, 1cC, 1dC, and 2dC, showed a significant inhibitory activity toward τ(306-336) peptide aggregation with percent inhibition ranging from 50.5 to 62.1%. Likewise, 1dC and 2dC exerted a remarkable ability to inhibit self-induced Aβ1-42 aggregation. Notwithstanding, in vitro studies displayed cytotoxicity toward HepG2 cells and cerebellar granule neurons; no pathophysiological abnormality was observed when 1dC was administered to mice at 14 mg/kg (i.p.). 1dC was also able to permeate to the CNS as shown by in vitro and in vivo models. The maximum brain concentration was close to the IC50 value for acetylcholinesterase inhibition with a relatively slow elimination half-time. 1dC showed an acceptable safety and good pharmacokinetic properties and a multifunctional biological profile.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- amyloidní beta-protein MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory farmakologie MeSH
- fenothiaziny farmakologie MeSH
- myši MeSH
- racionální návrh léčiv MeSH
- takrin * farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Alzheimer's disease (AD) is a major public health problem, which is due to its increasing prevalence and lack of effective therapy or diagnostics. The complexity of the AD pathomechanism requires complex treatment, e.g. multifunctional ligands targeting both the causes and symptoms of the disease. Here, we present new multitarget-directed ligands combining pharmacophore fragments that provide a blockade of serotonin 5-HT6 receptors, acetyl/butyrylcholinesterase inhibition, and amyloid β antiaggregation activity. Compound 12 has displayed balanced activity as an antagonist of 5-HT6 receptors ( Ki = 18 nM) and noncompetitive inhibitor of cholinesterases (IC50 hAChE = 14 nM, IC50 eqBuChE = 22 nM). In further in vitro studies, compound 12 has shown amyloid β antiaggregation activity (IC50 = 1.27 μM) and ability to permeate through the blood-brain barrier. The presented findings may provide an excellent starting point for further studies and facilitate efforts to develop new effective anti-AD therapy.
- MeSH
- Alzheimerova nemoc farmakoterapie etiologie MeSH
- amyloidní beta-protein metabolismus MeSH
- butyrylcholinesterasa farmakologie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- lidé MeSH
- ligandy * MeSH
- molekulární modely MeSH
- peptidové fragmenty metabolismus MeSH
- racionální návrh léčiv MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent advancements in deep learning and generative models have significantly expanded the applications of virtual screening for drug-like compounds. Here, we introduce a multitarget transformer model, PCMol, that leverages the latent protein embeddings derived from AlphaFold2 as a means of conditioning a de novo generative model on different targets. Incorporating rich protein representations allows the model to capture their structural relationships, enabling the chemical space interpolation of active compounds and target-side generalization to new proteins based on embedding similarities. In this work, we benchmark against other existing target-conditioned transformer models to illustrate the validity of using AlphaFold protein representations over raw amino acid sequences. We show that low-dimensional projections of these protein embeddings cluster appropriately based on target families and that model performance declines when these representations are intentionally corrupted. We also show that the PCMol model generates diverse, potentially active molecules for a wide array of proteins, including those with sparse ligand bioactivity data. The generated compounds display higher similarity known active ligands of held-out targets and have comparable molecular docking scores while maintaining novelty. Additionally, we demonstrate the important role of data augmentation in bolstering the performance of generative models in low-data regimes. Software package and AlphaFold protein embeddings are freely available at https://github.com/CDDLeiden/PCMol.
Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 μM, IC50(BChE) = 0.13-0.067 μM, and 14-18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.
- MeSH
- acetylcholinesterasa MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- aminochinoliny chemie MeSH
- antioxidancia chemie farmakologie MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- GPI-vázané proteiny antagonisté a inhibitory MeSH
- kinetika MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- neuroprotektivní látky chemie farmakologie MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Novel indolotacrine analogues were designed, synthesized, and evaluated as potential drugs for the treatment of Alzheimer's disease. By using a multitarget-directed ligand approach, compounds were designed to act simultaneously as cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors. The compounds were also evaluated for antioxidant, cytotoxic, hepatotoxic, and blood-brain barrier (BBB) permeability properties. Indolotacrine 9 b (9-methoxy-2,3,4,6-tetrahydro-1H-indolo[2,3-b]quinolin-11-amine) showed the most promising results in the in vitro assessment; it is a potent inhibitor of acetylcholinesterase (AChE IC50 : 1.5 μm), butyrylcholinesterase (BChE IC50 : 2.4 μm) and MAO A (IC50 : 0.49 μm), and it is also a weak inhibitor of MAO B (IC50 : 53.9 μm). Although its cytotoxic (IC50 : 5.5±0.4 μm) and hepatotoxic (IC50 : 1.22±0.11 μm) profiles are not as good as those of the standard 7-methoxytacrine (IC50 : 63±4 and 11.50±0.77 μm, respectively), the overall improvement in the inhibitory activities and potential to cross the BBB make indolotacrine 9 b a promising lead compound for further development and investigation.
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- buňky Hep G2 MeSH
- chinoliny chemická syntéza chemie metabolismus terapeutické užití toxicita MeSH
- cholinesterasové inhibitory chemická syntéza metabolismus terapeutické užití toxicita MeSH
- hematoencefalická bariéra metabolismus MeSH
- indoly chemická syntéza chemie metabolismus terapeutické užití toxicita MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory MAO chemická syntéza metabolismus terapeutické užití toxicita MeSH
- lidé MeSH
- ligandy MeSH
- monoaminoxidasa chemie metabolismus MeSH
- racionální návrh léčiv * MeSH
- takrin chemie metabolismus terapeutické užití toxicita MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antiinfekční látky * chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory * chemická syntéza chemie farmakologie MeSH
- GPI-vázané proteiny metabolismus MeSH
- imidazoly * chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- Mycobacterium avium růst a vývoj MeSH
- Mycobacterium kansasii růst a vývoj MeSH
- Mycobacterium tuberculosis růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 μM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 μM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- aminochinoliny chemie farmakologie MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- benzothiazoly antagonisté a inhibitory MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- koně MeSH
- kyseliny sulfonové antagonisté a inhibitory MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- neuroprotektivní látky chemická syntéza chemie farmakologie MeSH
- oxidační stres účinky léků MeSH
- piperazin chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The authors report on the synthesis and biological evaluation of new compounds whose structure combines tacrine and indole moieties. Tacrine-indole heterodimers were designed to inhibit cholinesterases and β-amyloid formation, and to cross the blood-brain barrier. The most potent new acetylcholinesterase inhibitors were compounds 3c and 4d (IC50 = 25 and 39 nM, respectively). Compound 3c displayed considerably higher selectivity for acetylcholinesterase relative to human plasma butyrylcholinesterase in comparison to compound 4d (selectivity index: IC50 [butyrylcholinesterase]/IC50 [acetylcholinesterase] = 3 and 0.6, respectively). Furthermore, compound 3c inhibited β-amyloid-dependent amyloid nucleation in the yeast-based prion nucleation assay and displayed no dsDNA destabilizing interactions with DNA. Compounds 3c and 4d displayed a high probability of crossing the blood-brain barrier. The results support the potential of 3c for future development as a dual-acting therapeutic agent in the prevention and/or treatment of Alzheimer's disease.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- amyloidní beta-protein metabolismus MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- cílená molekulární terapie MeSH
- dimerizace MeSH
- DNA chemie MeSH
- hematoencefalická bariéra MeSH
- indoly chemie farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- ligandy MeSH
- neuroprotektivní látky chemie farmakologie MeSH
- preklinické hodnocení léčiv MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- takrin chemie farmakologie MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid β (Aβ) aggregation and mitochondrial enzyme ABAD, whose interaction with Aβ leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aβ aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 μM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.
- MeSH
- 3-hydroxyacyl-CoA-dehydrogenasy antagonisté a inhibitory metabolismus MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- amyloidní beta-protein antagonisté a inhibitory metabolismus MeSH
- benzothiazoly chemie farmakologie MeSH
- cholinergní látky chemická syntéza chemie farmakologie MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- molekulární struktura MeSH
- neuroprotektivní látky chemická syntéza chemie farmakologie MeSH
- proteinové agregáty účinky léků MeSH
- takrin chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH