Pine forest Dotaz Zobrazit nápovědu
Ancient DNA from historical and subfossil wood has a great potential to provide new insights into the history of tree populations. However, its extraction and analysis have not become routine, mainly because contamination of the wood with modern plant material can complicate the verification of genetic information. Here, we used sapwood tissue from 22 subfossil pines that were growing c. 13 000 yr bp in Zurich, Switzerland. We developed and evaluated protocols to eliminate surface contamination, and we tested ancient DNA authenticity based on plastid DNA metabarcoding and the assessment of post-mortem DNA damage. A novel approach using laser irradiation coupled with bleaching and surface removal was most efficient in eliminating contaminating DNA. DNA metabarcoding confirmed which ancient DNA samples repeatedly amplified pine DNA and were free of exogenous plant taxa. Pine DNA sequences of these samples showed a high degree of cytosine to thymine mismatches, typical of post-mortem damage. Stringent decontamination of wood surfaces combined with DNA metabarcoding and assessment of post-mortem DNA damage allowed us to authenticate ancient DNA retrieved from the oldest Late Glacial pine forest. These techniques can be applied to any subfossil wood and are likely to improve the accessibility of relict wood for genome-scale ancient DNA studies.
Lecanosticta acicola causes brown spot needle blight (BSNB) of Pinus species. The pathogen occurs mostly in the Northern Hemisphere but has also been reported in Central America and Colombia. BSNB can lead to stunted growth and tree mortality, and has resulted in severe damage to pine plantations in the past. There have been increasingly frequent new reports of this pathogen in Europe and in North America during the course of the past 10 years. This is despite the fact that quarantine practices and eradication protocols are in place to prevent its spread. TAXONOMY: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycetes; Subclass Dothideomycetidae; Order Capniodales; Family Mycosphaerellaceae; Genus Lecanosticta. HOST RANGE AND DISTRIBUTION: Lecanosticta spp. occur on various Pinus species and are found in North America, Central America, South America (Colombia), Europe as well as Asia. DISEASE SYMPTOMS: Small yellow irregular spots appear on the infected pine needles that become brown over time. They can be surrounded by a yellow halo. These characteristic brown spots develop to form narrow brown bands that result in needle death from the tips down to the point of infection. Needles are prematurely shed, leaving bare branches with tufts of new needles at the branch tips. Infection is usually most severe in the lower parts of the trees and progresses upwards into the canopies. USEFUL WEBSITES: The EPPO global database providing information on L. acicola (https://gd.eppo.int/taxon/SCIRAC) Reference genome of L. acicola available on GenBank (https://www.ncbi.nlm.nih.gov/genome/?term=Lecanosticta+acicola) JGI Gold Genome database information sheet of L. acicola sequenced genome (https://gold.jgi.doe.gov/organism?xml:id=Go0047147).
The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.
- MeSH
- biomasa MeSH
- borovice * MeSH
- členovci * MeSH
- ekosystém MeSH
- lesy MeSH
- Oligochaeta * MeSH
- půda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Scots pine (Pinus sylvestris L.) is a widespread tolerant forest tree-species; however, its adaptability to environmental change differs among sites with various buffering capacity. In this study, we compared the spatial effects of aridity index (AI) and nitrogen deposition (ND) on biomass density in natural and man-made pine stands of differing soil fertility using geographically weighted multiple lag regression. Soil fertility was defined using soil series as zonal trophic (27.9%), acidic (48.2%), gleyed (15.2%) and as azonal exposed (2.5%), maple (2.4%), ash (0.8%), wet (2.1%) and peat (0.9%) under pine stands in the Czech Republic (Central Europe; 4290.5 km2; 130-1298 m a.s.l.). Annual AI and ND in every pine stand were estimated by intersection between raster and vector from 1 × 1 km grid for years 2000, 2003, 2007 and 2010 of severe non-specific forest damage spread. Biomass density was obtained from a MODIS 250 × 250 m raster using the enhanced vegetation index (EVI) for years 2000-2015, with a decrease in EVI indicating non-specific damage. Environmental change was assessed by comparing predictor values at EVI time t and t+λ. Non-specific damage was registered over 51.9% of total forest area. Less than 8.8% of damaged stands were natural and the rest (91.2%) of damaged stands were man-made. Pure pine stands were more damaged than mixed. The ND effect prevailed up to 2007, while AI dominated later. Temporal increasing ND effect under AI effectiveness led to the most significant pine stand damage in 2008 and 2014. Predictors from 2000 to 2007 afflicted 58.5% of non-specifically damaged stands at R2 0.09-0.76 (median 0.38), but from 2000 to 2010 afflicted 57.1% of the stands at R2 0.16-0.75 (median 0.40). The most damaged stands occurred on acidic sites. Mixed forest and sustainable management on natural sites seem as effective remediation reducing damage by ND.
- MeSH
- borovice lesní * MeSH
- borovice * MeSH
- dusík MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate-driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901-2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large-scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.
- MeSH
- borovice * MeSH
- klimatické změny MeSH
- lesy MeSH
- smrk * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current (137)Cs activity concentrations were studied at three localities in individual soil horizons of Stagnosol, Arenic Podzol and Haplic Cambisol soil units in soil blocks with dimensions of 20 × 20 × 40 cm situated below pine canopies (n = 3) and spruce canopies (n = 3), and below small canopy gaps, at least 15 × 15 m in area (n = 3 + 3), which have probably endured since 1986. The main zone of (137)Cs accumulation in all the localities was found to be in the organic horizons (H and F). No significant transport and accumulation of (137)Cs into illuvial soil horizons (Bm, Bs or Bhs, Bv and Bv/IIC) was found. The estimated current total (137)Cs activity concentrations in the soil blocks 40 cm in depth were only slightly higher below the coniferous canopy than they were below nearby canopy gaps. The inventory of (137)Cs in the soils was found to be in accordance with the estimated (137)Cs inputs from the Chernobyl fallout and from global fallout. The low amounts of (137)Cs found accumulated in the aboveground biomass (mosses, grasses, needles) did not substantially bias the studied radiocaesium balance in the soils. The vertical migration rate of (137)Cs in soils (cm/year) had a tendency to be higher below canopies than below canopy gaps and below pine canopies than below spruce canopies. We expected the current (137)Cs activity concentrations in the individual soil horizons to be related to the studied soil parameters: pH (H2O), pH (CaCl2), content of organic matter and mineral portion and portion of humic and fulvic acid contents (Q4/6). However, this was not confirmed. Similarly, we observed a weak tendency toward higher (137)Cs activity in soils below the canopy than in soils below canopy gaps. The available gaps used in our study may have been too small, and they may have been affected by an accumulation of litter and humus containing (137)Cs from the surrounding plots situated below neighbouring canopies.
- MeSH
- borovice MeSH
- černobylská havárie MeSH
- lesy MeSH
- monitorování radiace MeSH
- půda chemie MeSH
- radioaktivní látky znečišťující půdu analýza MeSH
- radioizotopy cesia analýza MeSH
- smrk MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.
The Canary Islands, an archipelago east of Morocco's Atlantic coast, present steep altitudinal gradients covering various climatic zones from hot deserts to subalpine Mediterranean, passing through fog-influenced cloud forests. Unlike the majority of the Canarian flora, Pinus canariensis C. Sm. ex DC. in Buch grow along most of these gradients, allowing the study of plant functioning in contrasting ecosystems. Here we assess the water sources (precipitation, fog) of P. canariensis and its physiological behavior in its different natural environments. We analyzed carbon and oxygen isotope ratios of water and organics from atmosphere, soil and different plant organs and tissues (including 10-year annual time series of tree-ring cellulose) of six sites from 480 to 1990 m above sea level on the Canary Island La Palma. We found a decreasing δ18O trend in source water that was overridden by an increasing δ18O trend in needle water, leaf assimilates and tree-ring cellulose with increasing altitude, suggesting site-specific tree physiological responses to relative humidity. Fog-influenced and fog-free sites showed similar δ13C values, suggesting photosynthetic activity to be limited by stomatal closure and irradiance at certain periods. In addition, we observed an 18O-depletion (fog-free and timberline sites) and 13C-depletion (fog-influenced and fog-free sites) in latewood compared with earlywood caused by seasonal differences in: (i) water uptake (i.e., deeper ground water during summer drought, fog water frequency and interception) and (ii) meteorological conditions (stem radial growth and latewood δ18O correlated with winter precipitation). In addition, we found evidence for foliar water uptake and strong isotopic gradients along the pine needle axis in water and assimilates. These gradients are likely the reason for an unexpected underestimation of pine needle water δ18O when applying standard leaf water δ18O models. Our results indicate that soil water availability and air humidity conditions are the main drivers of the physiological behavior of pine along the Canary Island's altitudinal gradients.
- MeSH
- borovice * MeSH
- ekosystém MeSH
- izotopy kyslíku analýza MeSH
- izotopy uhlíku analýza MeSH
- stromy MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Španělsko MeSH
Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- borovice růst a vývoj mikrobiologie parazitologie MeSH
- brouci fyziologie MeSH
- dusík metabolismus MeSH
- ekosystém MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- mykorhiza klasifikace genetika růst a vývoj izolace a purifikace MeSH
- nemoci rostlin parazitologie MeSH
- požáry MeSH
- půda chemie MeSH
- rhizosféra MeSH
- stromy růst a vývoj mikrobiologie parazitologie MeSH
- voda analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.
- MeSH
- borovice lesní genetika fyziologie MeSH
- chlorofyl fyziologie MeSH
- fluorescence MeSH
- fotosyntetická reakční centra (proteinové komplexy) fyziologie MeSH
- fotosyntéza genetika MeSH
- fotosystém II (proteinový komplex) fyziologie MeSH
- genetická variace * MeSH
- genotyp * MeSH
- kvantitativní znak dědičný * MeSH
- lesy MeSH
- rostlinné geny MeSH
- stromy genetika fyziologie MeSH
- světlo MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH