Tetranychus urticae. Dotaz Zobrazit nápovědu
There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds. In this research, a lipophilic extract ofOnosma visianiiroots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition againstTetranychus urticaemites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested againstTetranychus urticae. All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.
- MeSH
- akaricidy chemie farmakologie MeSH
- Boraginaceae chemie MeSH
- kořeny rostlin chemie MeSH
- naftochinony chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Tetranychidae účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Orius strigicollis (Poppius) is an anthocorid bug with high foraging ability on thrips as well as on mites, and the bug has been considered as a potential biological control agent in Taiwan. Life table and predation studies of O. strigicollis fed on Cadra cautella (Walker) and Tetranychus urticae (Koch) eggs were conducted at 25 ± 1°C. Data were analyzed and compared using TWOSEX-MSChart and CONSUME-MSChart software. O. strigicollis fed on eggs of C. cautella, a substitute prey, showed significantly higher survival rate and developmental rate than individuals fed on their natural prey, T. urticae eggs. The fecundity of O. strigicollis fed on C. cautella eggs was, on average, 13.2 times higher than that of those fed on T. urticae eggs, despite of the fact that during the entire nymphal stage, the consumption rate of O. strigicollis on T. urticae eggs was ca. 9 times higher than on almond moth eggs The conversion rate (i.e., number of prey eggs needed to produce one predator egg) for this predatory bug reared on T. urticae eggs and almond moth eggs were 604.6 and 6.0, respectively, indicating that almond moth eggs served as an effective alternative prey for ensuring the predator's reproduction. This is the first study pertaining to the population parameters and predation rates of O. strigicollis using the age-stage two-sex approach to describe differences between O. strigicollis populations reared on natural and alternative preys. This information may be useful in mass rearing programs and field application involving this biological control agent.
- MeSH
- biologická kontrola škůdců * MeSH
- dieta MeSH
- Heteroptera růst a vývoj fyziologie MeSH
- můry * růst a vývoj MeSH
- nymfa růst a vývoj fyziologie MeSH
- ovum MeSH
- predátorské chování * MeSH
- tabulky života MeSH
- Tetranychidae * růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We provide the complete sequence of a virus tentatively named "Tetranychus urticae-associated picorna-like virus 1PK13" (TuaPV1-PK13) obtained from the high-throughput sequencing of a symptomless apple leaf sample. Although the virus sequence was originally derived from apple leaves, the data suggest that the virus is associated with the two-spotted mite Tetranychus urticae.
Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes.
- MeSH
- Arabidopsis imunologie parazitologie MeSH
- býložravci * MeSH
- kořeny rostlin imunologie parazitologie MeSH
- mezibuněčná komunikace MeSH
- regulátory růstu rostlin fyziologie MeSH
- rostlinné buňky metabolismus MeSH
- Tetranychidae fyziologie MeSH
- Thysanoptera fyziologie MeSH
- Tylenchoidea fyziologie MeSH
- výhonky rostlin imunologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Four unprecedented acetylenic alcohols, (Z)-non-7-en-5-yn-1,2,4-triol (1), (Z)-non-7-en-5-yn-1,4-diol (2), (Z)-1,2-dihydroxynon-7-en-5-yn-4-one (3), and (Z)-1-hydroxynon-7-en-5-yn-4-one (4) were isolated from the poisonous mushroom Tricholoma pardinum (Agaricales, Basidiomycota), together with the known compounds 1H-indole-3-carbaldehyde (5) and 6-hydroxy-1H-indole-3-carbaldehyde (6). Their structures were determined by NMR and IR spectroscopy, and mass spectrometry. The crude acetone extract of the mushroom showed potent anti-arthropod activity against Tetranychus urticae (Acarinae), a dangerous crop pest.[Figure: see text].
Genetically engineered (GE) crops with stacked insecticidal traits expose arthropods to multiple Cry proteins fromBacillus thuringiensis(Bt). One concern is that the different Cry proteins may interact and lead to unexpected adverse effects on non-target species. Bi- and tri-trophic experiments with SmartStax maize, herbivorous spider mites (Tetranychus urticae), aphids (Rhopalosiphum padi), predatory spiders (Phylloneta impressa), ladybeetles (Harmonia axyridis) and lacewings (Chrysoperla carnea) were conducted. Cry1A.105, Cry1F, Cry3Bb1 and Cry34Ab1 moved in a similar pattern through the arthropod food chain. By contrast, Cry2Ab2 had highest concentrations in maize leaves, but lowest in pollen, and lowest acquisition rates by herbivores and predators. While spider mites contained Cry protein concentrations exceeding the values in leaves (except Cry2Ab2), aphids contained only traces of some Cry protein. Predators contained lower concentrations than their food. Among the different predators, ladybeetle larvae showed higher concentrations than lacewing larvae and juvenile spiders. Acute effects of SmartStax maize on predator survival, development and weight were not observed. The study thus provides evidence that the different Cry proteins do not interact in a way that poses a risk to the investigated non-target species under controlled laboratory conditions.
- MeSH
- Bacillus thuringiensis MeSH
- bakteriální proteiny genetika MeSH
- členovci * MeSH
- endotoxiny genetika MeSH
- geneticky modifikované rostliny genetika MeSH
- hemolyziny genetika MeSH
- kukuřice setá genetika MeSH
- larva MeSH
- potravní řetězec * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, agrochemical industries have been focused on the development of essential oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of biological activities, and some of their EOs showed good potential as pesticidal agents. In this regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults, Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 μL L-1, 4.9 ± 0.8 mL L-1, 18.5 ± 2.1 μg larvae-1, and 3.3 ± 0.5 mL L-1, respectively. On the contrary, Musca domestica L. adults and 3rd instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50 or LD50: 71.4 ± 7.2 μg adult-1, 79.4 ± 5.2 μL L-1, 44.2 ± 5.8 μg larvae-1, respectively). The results obtained in this work demonstrated that various insects and pests could be differently sensible to the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel ingredients of botanical insecticides and pesticides.
- Publikační typ
- časopisecké články MeSH