multivalent binding
Dotaz
Zobrazit nápovědu
The interaction of Bordetella pertussis adenylate cyclase toxin (CyaA) with complement receptor 3 (CR3, CD11b/CD18) involves N-linked oligosaccharide chains. To investigate the relative importance of the individual N-glycans of CR3 for toxin activity, the asparagine residues of the consensus N-glycosylation sites of CR3 were substituted with glutamine residues that cannot be glycosylated. Examination of CR3 mutant variants and mass spectrometry analysis of the N-glycosylation pattern of CR3 revealed that N-glycans located in the C-terminal part of the CD11b subunit are involved in binding and cytotoxic activity of CyaA. We suggest that these N-glycans form a defined clustered saccharide patch that enables multivalent contact of CR3 with CyaA, enhancing both affinity and specificity of the integrin-toxin interaction.
- MeSH
- adenylátcyklasový toxin genetika metabolismus MeSH
- antigeny CD11b chemie metabolismus MeSH
- antigeny CD18 chemie metabolismus MeSH
- asparagin genetika MeSH
- Bordetella pertussis metabolismus patogenita MeSH
- glutamin genetika MeSH
- glykosylace MeSH
- lidé MeSH
- makrofágový antigen 1 genetika metabolismus MeSH
- polysacharidy metabolismus MeSH
- substituce aminokyselin MeSH
- terciární struktura proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Galectin-3 (Gal-3), a member of the β-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galβ1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcβ1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.
- MeSH
- aminocukry chemická syntéza chemie metabolismus MeSH
- galektin 3 antagonisté a inhibitory metabolismus MeSH
- glykoproteiny chemická syntéza chemie metabolismus farmakologie MeSH
- glykosylace MeSH
- lidé MeSH
- ligandy MeSH
- oligosacharidy chemická syntéza chemie metabolismus MeSH
- sérový albumin hovězí chemická syntéza chemie metabolismus farmakologie MeSH
- skot MeSH
- techniky kombinatorické chemie MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
- MeSH
- buněčná membrána metabolismus MeSH
- cholesterol MeSH
- difuze MeSH
- G(M1) gangliosid chemie metabolismus MeSH
- hydraziny metabolismus MeSH
- ligandy MeSH
- metoda Monte Carlo MeSH
- ovce MeSH
- počítačová simulace MeSH
- receptory buněčného povrchu metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- shluková analýza MeSH
- titrace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only β-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.
- MeSH
- biomimetické materiály chemická syntéza chemie farmakologie MeSH
- galektiny antagonisté a inhibitory genetika metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- kinetika MeSH
- krevní proteiny antagonisté a inhibitory genetika metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Clostridium difficile infections cause gastrointestinal disorders and can lead to life-threatening conditions. The symptoms can vary from severe diarrhea to the formation of pseudomembranous colitis and therefore trigger a need for new therapies. The initial step of disease is the binding of the bacterial enterotoxins toxin A and B to the cell surface of epithelial intestinal cells. Scavenging of the toxins is crucial to inhibit their fatal effect in the human body and circumvent the administration of antibiotics. Cell surface glycans are common as ligands for TcdA. Although crucial for carbohydrate-protein interactions, a multivalent presentation of glycans for binding has been hardly considered. Here, we establish a neo-glycoprotein-based glycan library to identify an effective multivalent glycan ligand for TcdA. It comprises 40 different glycan epitopes based on N-acetyllactosamine precursors. Nine structures exhibit strong binding of the receptor domain. Among them, the Lewisy-Lewisx-epitope shows the best performance for binding both the receptor domain and the holotoxin. Therefore, the glycan was synthesized de novo and coupled to BSA as a scaffold for multivalent presentation. The corresponding neo-glycoprotein facilitates the proper scavenging of TcdA in vitro and effectively protects HT29 cells from TcdA-induced cell damage.
Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., β-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.
Cellular entry, the first crucial step of viral infection, can be inhibited by molecules adsorbed on the virus surface. However, apart from using stronger affinity, little is known about the properties of such inhibitors that could increase their effectiveness. Our simulations showed that multivalent inhibitors can be designed to be much more efficient than their monovalent counterparts. For example, for our particular simulation model, a single multivalent inhibitor spanning 5 to 6 binding sites is enough to prevent the uptake compared to the required 1/3 of all the receptor binding sites needed to be blocked by monovalent inhibitors. Interestingly, multivalent inhibitors are more efficient in inhibiting the uptake not only due to their increased affinity but mainly due to the co-localization of the inhibited receptor binding sites at the virion's surface. Furthermore, we show that Janus-like inhibitors do not induce virus aggregation. Our findings may be generalized to other uptake processes including bacteria and drug-delivery.
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
- MeSH
- galektin 3 chemie metabolismus MeSH
- glykoproteiny chemie farmakologie MeSH
- laktosa analogy a deriváty chemie MeSH
- lidé MeSH
- ligandy MeSH
- sérový albumin hovězí chemie MeSH
- simulace molekulového dockingu * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Chemical immunotherapeutic strategies including Antibody Recruiting Molecules (ARMs - bivalent small molecules containing an antibody-binding domain (ABD) and a target-binding domain (TBD)) direct immune-mediated clearance of diseased cells. Anti-cancer ARM function relies on high tumor antigen valency, limiting function against lower antigen expressing tumors. To address this limitation, we report a tunable multivalent immune recruitment (MIR) platform to amplify/stabilize antibody recruitment to cells with lower antigen valencies. An initial set of polymeric ARMs (pARMs) were synthesized and screened to evaluate ABD/TBD copy number, ratio, and steric occlusion on specific immune induction. Most pARMs demonstrated simultaneous high avidity binding to anti-dinitrophenyl antibodies and prostate-specific membrane antigens on prostate cancer. Optimized pARMs mediated enhanced anti-cancer immune function against lower antigen expressing target cells compared to an analogous ARM.
- MeSH
- antigeny * MeSH
- fagocytóza MeSH
- lidé MeSH
- nádory prostaty * MeSH
- protilátky chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH