BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- MeSH
- Chiroptera * physiology MeSH
- Hibernation * MeSH
- Lyssavirus * MeSH
- Transcriptome MeSH
- Viruses * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
- MeSH
- Leishmania virology MeSH
- Leishmaniasis virology MeSH
- Humans MeSH
- RNA, Viral analysis MeSH
- RNA-Dependent RNA Polymerase genetics MeSH
- RNA Viruses genetics MeSH
- Capsid Proteins genetics MeSH
- Viral Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The importance of gene expression regulation in viruses based upon G-quadruplex may point to its potential utilization in therapeutic targeting. Here, we present analyses as to the occurrence of putative G-quadruplex-forming sequences (PQS) in all reference viral dsDNA genomes and evaluate their dependence on PQS occurrence in host organisms using the G4Hunter tool. PQS frequencies differ across host taxa without regard to GC content. The overlay of PQS with annotated regions reveals the localization of PQS in specific regions. While abundance in some, such as repeat regions, is shared by all groups, others are unique. There is abundance within introns of Eukaryota-infecting viruses, but depletion of PQS in introns of bacteria-infecting viruses. We reveal a significant positive correlation between PQS frequencies in dsDNA viruses and corresponding hosts from archaea, bacteria, and eukaryotes. A strong relationship between PQS in a virus and its host indicates their close coevolution and evolutionarily reciprocal mimicking of genome organization.
- MeSH
- Archaea virology MeSH
- Bacteria virology MeSH
- DNA genetics MeSH
- G-Quadruplexes * MeSH
- Genome, Viral * MeSH
- Genome MeSH
- Humans MeSH
- Gene Expression Regulation MeSH
- Viral Proteins genetics MeSH
- Viruses genetics MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Bacteriophages are ubiquitous in nature and represent a vast repository of genetic diversity, which is driven by the endless coevolution cycle with a diversified group of bacterial hosts. Studying phage-host interactions is important to gain novel insights into their dynamic adaptation. In this study, we isolated 12 phages infecting species of the Acinetobacter baumannii-Acinetobacter calcoaceticus complex which exhibited a narrow host range and similar morphological features (podoviruses with short tails of 9-12 nm and isometric heads of 50-60 nm). Notably, the alignment of the newly sequenced phage genomes (40-41 kb of DNA length) and all Acinetobacter podoviruses deposited in Genbank has shown high synteny, regardless of the date and source of isolation that spans from America to Europe and Asia. Interestingly, the C-terminal pectate lyase domain of these phage tail fibres is often the only difference found among these viral genomes, demonstrating a very specific genomic variation during the course of their evolution. We proved that the pectate lyase domain is responsible for phage depolymerase activity and binding to specific Acinetobacter bacterial capsules. We discuss how this mechanism of phage-host co-evolution impacts the tail specificity apparatus of Acinetobacter podoviruses.
- MeSH
- Acinetobacter baumannii virology MeSH
- Acinetobacter calcoaceticus virology MeSH
- Genome, Viral genetics MeSH
- Host Specificity physiology MeSH
- Podoviridae classification genetics metabolism MeSH
- Polygalacturonase metabolism MeSH
- Polysaccharide-Lyases metabolism MeSH
- Protein Domains physiology MeSH
- Base Sequence MeSH
- Virion genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia MeSH
- Europe MeSH
Coevolution between bacteria and bacteriophages can be characterized as an infinitive constant evolutionary battle (phage-host arm race), which starts during phage adsorption and penetration into host cell, continues during phage replication inside the cells, and remains preserved also during prophage lysogeny. Bacteriophage may exist inside the bacterial cells in four forms with different evolutionary strategies: as a replicating virus during the lytic cycle, in an unstable carrier state termed pseudolysogeny, as a prophage with complete genome during the lysogeny, or as a defective cryptic prophage. Some defensive mechanisms of bacteria and virus countermeasures are characterized, and some evolutionary questions concerning phage-host relationship are discussed.
- MeSH
- Bacteria genetics virology MeSH
- Bacteriophages genetics physiology MeSH
- DNA, Bacterial genetics MeSH
- DNA, Viral genetics MeSH
- Lysogeny MeSH
- Evolution, Molecular * MeSH
- Gene Expression Regulation MeSH
- Virus Replication MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups. The host range expansion of the ancestral virus might have been driven by gradual evolution of resistance in host cells, and the resistance alleles in all three receptor loci have been identified. Here, we characterized two alleles of the tva receptor gene with similar intronic deletions comprising the deduced branch-point signal within the first intron and leading to inefficient splicing of tva mRNA. As a result, we observed decreased susceptibility to subgroup A ASLV in vitro and in vivo. These alleles were independently found in a close-bred line of domestic chicken and Indian red jungle fowl (Gallus gallus murghi), suggesting that their prevalence might be much wider in outbred chicken breeds. We identified defective splicing to be a mechanism of resistance to ASLV and conclude that such a type of mutation could play an important role in virus-host coevolution.
- MeSH
- Alpharetrovirus genetics physiology MeSH
- Genetic Predisposition to Disease MeSH
- Introns MeSH
- Chickens genetics metabolism virology MeSH
- Molecular Sequence Data MeSH
- Poultry Diseases genetics metabolism virology MeSH
- Avian Proteins genetics metabolism MeSH
- Sarcoma, Avian genetics metabolism virology MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Deletion MeSH
- RNA Splicing MeSH
- Receptors, Virus genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH