Changes in the protonation state of lyophilized proteins can impact structural integrity, chemical stability, and propensity to aggregate upon reconstitution. When a buffer is chosen, the freezing/drying process may result in dramatic changes in the protonation state of the protein due to ionization shift of the buffer. In order to determine whether protonation shifts are occurring, ionizable probes can be added to the formulation. Optical probes (dyes) have shown dramatic ionization changes in lyophilized products, but it is unclear whether the pH indicator is uniform throughout the matrix and whether the change in the pH indicator actually mirrors drug ionization changes. In solid-state NMR (SSNMR) spectroscopy, the chemical shift of the carbonyl carbon in carboxylic acids is very sensitive to the ionization state of the acid. Therefore, SSNMR can be used to measure ionization changes in a lyophilized matrix by employing a small quantity of an isotopically-labeled carboxylic acid species in the formulation. This paper compares the apparent pH of six trehalose-containing lyophilized buffer systems using SSNMR and UV-Vis diffuse reflectance spectroscopy (UVDRS). Both SSNMR and UVDRS results using two different ionization probes (butyric acid and bromocresol purple, respectively) showed little change in apparent acidity compared to the pre-lyophilized solution in a sodium citrate buffer, but a greater change was observed in potassium phosphate, sodium phosphate, and histidine buffers. While the trends between the two methods were similar, there were differences in the numerical values of equivalent pH (pHeq) observed between the two methods. The potential causes contributing to the differences are discussed.
- MeSH
- fosfáty * chemie MeSH
- histidin * chemie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina citronová chemie MeSH
- lyofilizace * metody MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- pufry MeSH
- spektrofotometrie ultrafialová metody MeSH
- trehalosa * chemie MeSH
- Publikační typ
- časopisecké články MeSH
Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.
In 1961, Svensson described isoelectric focusing (IEF), the separation of ampholytic compounds in a stationary, natural pH gradient that was formed by passing current through a sucrose density gradient-stabilized ampholyte mixture in a constant cross-section apparatus, free of mixing. Stable pH gradients were formed as the electrophoretic transport built up a series of isoelectric ampholyte zones-the concentration of which decreased with their distance from the electrodes-and a diffusive flux which balanced the generating electrophoretic flux. When polyacrylamide gel replaced the sucrose density gradient as the stabilizing medium, the spatial and temporal stability of Svensson's pH gradient became lost, igniting a search for the explanation and mitigation of the loss. Over time, through a series of insightful suggestions, the currently held notion emerged that in the modern IEF experiment-where the carrier ampholyte (CA) mixture is placed between the anolyte- and catholyte-containing large-volume electrode vessels (open-system IEF)-a two-stage process operates that comprises a rapid first phase during which a linear pH gradient develops, and a subsequent slow, second stage, during which the pH gradient decays as isotachophoretic processes move the extreme pI CAs into the electrode vessels. Here we trace the development of the two-stage IEF model using quotes from the original publications and point out critical results that the IEF community should have embraced but missed. This manuscript sets the foundation for the companion papers, Parts 2 and 3, in which an alternative model, transient bidirectional isotachophoresis is presented to describe the open-system IEF experiment.
The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3 O+ and OH- ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pKa values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.
In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( μLeff(x)$\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ(x)$\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.
Solutions of three Good's buffers (HEPES, MOPS, and MES), both pure and mixed with sodium phosphate buffers (Na-P), are investigated in terms of the freezing-induced acidity changes in their operational pH ranges. The Good's buffers have the tendency to basify upon freezing and, more intensively, at lower pHs. The acidity varies most prominently in MES, where the change may reach the value of two. Importantly, the Good's buffers are shown to mitigate the strong acidification in the Na-P buffer. Diverse concentrations of the Good's buffers are added to cancel out the strong, freezing-induced acidity drop in 50 mM Na-P that markedly contributes to the solution's acidity; the relevant values are 3 mM HEPES, 10 mM MOPS, and 80 mM MES. These buffer blends are therefore proposed to be applied in maintaining approximately the acidity of solutions even after the freezing process and, as such, should limit the stresses for frozen chemicals and biochemicals.
- MeSH
- fosfáty * MeSH
- ionty MeSH
- koncentrace vodíkových iontů MeSH
- pufry MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
In this work, two mixed-mode columns from a different manufacturers and one marketed as a reversed-phase column were characterized and compared in the terms of their interaction abilities, retentivity, peak symmetry, and applicability for peptide separation. All the tested columns contain octadecyl ligand and positively charged modifier, i.e. pyridyl group for the reversed-phase column XSelect CSH C18, quaternary alkylamine for mixed-mode column Atlantis PREMIER BEH C18 AX, and permanently charged moiety (details not available from the manufacturer) for mixed-mode column Luna Omega PS C18. For detailed characterization and comparison of their interaction potential, several approaches were used. First, a simple Walters test was performed to estimate hydrophobic and silanophilic interactions of the tested columns. The highest values of both parameters were observed for column Atlantis PREMIER BEH C18 AX. To investigate the effect of pH and buffer concentration on retention, mobile phases composed of acetonitrile and buffer (ammonium formate, pH 3.0; ammonium acetate pH 4.7 and pH 6.9) in various concentrations (5mM; 10mM; 15mM and 20mM) were used. The analysis of permanently charged compounds was used to describe the electrostatic interaction abilities of the stationary phases. The most significant contribution of electrostatic interactions to the retention was observed for Atlantis PREMIER BEH C18 AX column in the mobile phase with buffer of pH 3.0. A set of ten dipeptides, three pentapeptides and one octapeptide was used to investigate the effects of pH and buffer concentration on retention and peak symmetry. Each of the tested columns provides the optimal peak shape under different buffer pH and concentration. The gradient separation of the 14 tested peptides was used to verify the application potential of the tested columns for peptide separation. The best separation was achieved within 4 minutes on column Atlantis PREMIER BEH C18 AX.
Garlic is a well-known example of natural self-defence system consisting of an inactive substrate (alliin) and enzyme (alliinase) which, when combined, produce highly antimicrobial allicin. Increase of alliinase stability and its activity are of paramount importance in various applications relying on its use for in-situ synthesis of allicin or its analogues, e.g., pulmonary drug delivery, treatment of superficial injuries, or urease inhibitors in fertilizers. Here, we discuss the effect of temperature, pH, buffers, salts, and additives, i.e. antioxidants, chelating agents, reducing agents and cosolvents, on the stability and the activity of alliinase extracted from garlic. The effects of the storage temperature and relative humidity on the stability of lyophilized alliinase was demonstrated. A combination of the short half-life, high reactivity and non-specificity to particular proteins are reasons most bacteria cannot deal with allicin's mode of action and develop effective defence mechanism, which could be the key to sustainable drug design addressing serious problems with escalating emergence of multidrug-resistant (MDR) bacterial strains.
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria účinky léků ultrastruktura MeSH
- biokatalýza účinky léků MeSH
- časové faktory MeSH
- česnek enzymologie MeSH
- chemické jevy * MeSH
- disulfidy chemie metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny sulfinové chemie metabolismus MeSH
- lyasy štěpící vazby C-S metabolismus MeSH
- lyofilizace MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiální viabilita účinky léků MeSH
- pufry MeSH
- stabilita enzymů účinky léků MeSH
- stereoizomerie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The determination of a suitable buffer environment for a protein of interest is not an easy task. The requirements of advanced techniques, the demands on the biological material and the researcher time needed for buffer optimization, as well as personal inflexibility, lead frequently to the use of sub-optimal buffers. Here, we demonstrate the design of a 48-condition buffer screen that can be used to determine an appropriate environment for downstream studies. By the combination of several techniques (differential scanning fluorimetry, dynamic light scattering, and bio-layer interferometry), we are able to assess the protein stability, homogeneity and binding activity across the screen with less than half a milligram of protein in 1 day. The application of this screen helps to avoid unsuitable conditions, to explain problems observed upon protein analysis and to choose the most suitable buffers for further research. The screen can be routinely used as a primary screen for buffer optimization in labs and facilities.
- MeSH
- dynamický rozptyl světla MeSH
- fluorometrie MeSH
- proteiny MeSH
- pufry MeSH
- stabilita proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
The international standard ISO 23317:2014 for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF) uses TRIS buffer to maintain neutral pH. In our previous papers, we investigated the interaction of a glass-ceramic scaffold with TRIS and HEPES buffers. Both of them speeded up glass-ceramic dissolution and hydroxyapatite (HAp) precipitation, thereby demonstrating their unsuitability for the in vitro testing of highly reactive biomaterials. In this article, we tested MOPS buffer (3-[N-morpholino] propanesulfonic acid), another amino acid from the group of "Goods buffers". A highly reactive glass-ceramic scaffold (derived from Bioglass®) was exposed to SBF under static-dynamic conditions for 13/15 days. The kinetics and morphology of the newly precipitated HAp were studied using two different concentrations of (PO4 )3- ions in SBF. The pH value and the SiIV , Ca2+ , and (PO4 )3- concentrations in the SBF leachate samples were measured every day (AAS, spectrophotometry). The glass-ceramic scaffold was monitored by SEM/EDS, XRD, WD-XRF, and BET before and after 1, 3, 7, 11, and 13/15 days of exposure. As in the case of TRIS and HEPES, the preferential dissolution of the glass-ceramic crystalline phase (Combeite) was observed, but less intensively. The lower concentration of (PO4 )3- ions slowed down the kinetics of HAp precipitation, thereby causing the disintegration of the scaffold structure. This phenomenon shows that the HAp phase was predominately generated by the presence of (PO4 )3- ions in the SBF, not in the glass-ceramic material. Irrespective of this, MOPS buffer is not suitable for the maintenance of pH in SBF.