The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.
- MeSH
- Running * physiology MeSH
- Diabetes Mellitus, Experimental * metabolism MeSH
- Physical Endurance physiology MeSH
- Adaptation, Physiological * physiology MeSH
- Physical Conditioning, Animal * physiology MeSH
- Muscle, Skeletal metabolism MeSH
- Blood Glucose metabolism MeSH
- Mice MeSH
- Streptozocin MeSH
- Muscle Fibers, Slow-Twitch metabolism MeSH
- Muscle Fibers, Fast-Twitch metabolism MeSH
- Mitochondria, Muscle * metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
It is not well-understood how type 1 diabetes (T1DM) affects skeletal muscle histological phenotype, particularly capillarisation. This study aimed to analyze skeletal muscle myosin heavy chain (MyHC) fibre type changes and 3D capillary network characteristics in experimental T1DM mice. Female C57BL/6J-OlaHsd mice were categorized into streptozotocin (STZ)-induced diabetic (n = 12) and age-matched non-diabetic controls (n =12). The muscle fibre phenotype of the soleus, gluteus maximus, and gastrocnemius muscles were characterized based on the expression of MyHC isoforms, while capillaries of the gluteus maximus were assessed with immunofluorescence staining, confocal laser microscopy and 3D image analysis. STZ-induced diabetic mice exhibited elevated glucose levels, reduced body weight, and prolonged thermal latency, verifying the T1DM phenotype. In both T1DM and non-diabetic mice, the gluteus maximus and gastrocnemius muscles predominantly expressed fast-twitch type 2b fibers, with no significant differences noted. However, the soleus muscle in non-diabetic mice had a greater proportion of type 2a fibers and comparable type 1 fiber densities (26.2 ± 14.6% vs 21.9 ± 13.5%) relative to diabetic mice. T1DM mice showed reduced fiber diameters (P = 0.026), and the 3D capillary network analysis indicated a higher capillary length per muscle volume in the gluteus maximus of diabetic mice compared to controls (P < 0.05). Overall, T1DM induced significant changes in the skeletal muscle, including shifts in MyHC fibre types, decreased fibre diameters, and increased relative capillarisation, possibly due to muscle fibre atrophy. Our findings emphasize the superior detail provided by the 3D analytical method for characterizing skeletal muscle capillary architecture, highlighting caution in interpreting 2D data for capillary changes in T1DM.
- MeSH
- Diabetes Mellitus, Type 1 metabolism pathology MeSH
- Diabetes Mellitus, Experimental * metabolism pathology MeSH
- Capillaries * pathology metabolism MeSH
- Muscle, Skeletal * metabolism pathology blood supply MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Streptozocin MeSH
- Myosin Heavy Chains * metabolism MeSH
- Imaging, Three-Dimensional MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Diabetes is closely connected with skeletal muscle dysfunction. Ellagic acid (EA) possesses a variety of bio-effects and is applied to the improvement of diabetes. The purpose of this study was to explore the potential improvement effect and mechanisms of EA in streptozotocin (STZ)-induced diabetic muscle atrophy. The model of diabetic mice was established by intra-peritoneal STZ to evaluate treatment effect of EA (100 mg/kg/d for 8 weeks) on muscle atrophy. Our data exhibited that EA enhanced fiber size and weight of gastrocnemius, and promoted grip strength to relieve STZ-induced muscle lesions. In serum, the levels of Creatine kinase (CK), lactate dehydrogenase (LDH), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL) were inhibited, while high-density lipoprotein cholesterol (HDL) level was enhanced by EA treatment in diabetic mice. In gastrocnemius, EA decreased Atrogin-1 and MuRF-1 expressions to relieve STZ-induced muscle atrophy. Moreover, EA increased NRF-1 and PGC-1alpha expressions to alleviate mitochondrial disorder. Meanwhile, EA suppressed CHOP and GRP-87 levels to relieve ER stress. Lastly, EA inhibited BAX expressions and enhanced Bcl-2 expressions to mitigate apoptosis. In conclusion, EA is preventing the event of STZ-induced gastrocnemia by amelioration of mitochondrial dysfunction, ER stress and apoptosis, and could be used in the protection and therapeutic of muscle atrophy in diabetes.
- MeSH
- Cholesterol metabolism MeSH
- Diabetes Mellitus, Experimental * chemically induced complications drug therapy MeSH
- Muscle, Skeletal metabolism MeSH
- Ellagic Acid * pharmacology therapeutic use metabolism MeSH
- Mice MeSH
- Streptozocin metabolism pharmacology MeSH
- Muscular Atrophy drug therapy prevention & control metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Diabetes is a chronic metabolic disorder characterized by hyperglycemia and associated with many health complications due to the long-term damage and dysfunction of various organs. A consequential complication of diabetes in men is reproductive dysfunction, reduced fertility, and poor reproductive outcomes. However, the molecular mechanisms responsible for diabetic environment-induced sperm damage and overall decreased reproductive outcomes are not fully established. We evaluated the effects of type 2 diabetes exposure on the reproductive system and the reproductive outcomes of males and their male offspring, using a mouse model. We demonstrate that paternal exposure to type 2 diabetes mediates intergenerational and transgenerational effects on the reproductive health of the offspring, especially on sperm quality, and on metabolic characteristics. Given the transgenerational impairment of reproductive and metabolic parameters through two generations, these changes likely take the form of inherited epigenetic marks through the germline. Our results emphasize the importance of improving metabolic health not only in women of reproductive age, but also in potential fathers, in order to reduce the negative impacts of diabetes on subsequent generations.
- MeSH
- Diabetes Mellitus, Type 2 blood chemically induced genetics MeSH
- Diet, High-Fat adverse effects MeSH
- Diabetes Mellitus, Experimental MeSH
- Phenotype * MeSH
- Infertility blood chemically induced genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Paternal Inheritance drug effects genetics MeSH
- Spermatozoa drug effects physiology MeSH
- Streptozocin toxicity MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The pathogenesis of Alzheimer's disease (AD), the most prevalent form of dementia, remains unclear. Over the past few years, evidence has accumulated indicating that perturbed cerebral bioenergetics and neuroinflammation may compromise cognitive functions and precedes the onset of AD and that impaired function of glial cells can likely contribute to the development of the disease. Recently, N6-methyladenosine (m6A) modification of RNA has been implicated in the regulation of different processes in the brain and to play a potential role in neurodegeneration. In the present study, we investigated the potential role of the m6A machinery enzymes in a streptozotocin (STZ) model of AD in human astrocytoma CCF-STTG1 cells. We observed that STZ-treated astrocytes expressed significantly higher levels of m6A demethylase fat mass and obesity-associated protein (FTO) and m6A reader YTHDF1 (YTH domain-containing family protein 1). Our experiments revealed that MO-I-500, a novel pharmacological inhibitor of FTO, can strongly reduce the adverse effects of STZ. Inhibition of FTO enhanced the survival of cells exposed to STZ and suppressed oxidative stress, apoptosis, elevated expression of glial fibrillary acidic protein, mitochondrial dysfunction, and bioenergetic disturbances induced by this compound. Overall, the results of this study indicate that perturbed m6A signaling may be contributing to AD pathogenesis, likely by compromising astrocyte bioenergetics.
- MeSH
- Adenosine MeSH
- Astrocytes * MeSH
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO * MeSH
- Humans MeSH
- Mitochondria MeSH
- Streptozocin toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Animal models are widely used for studying diabetes in translational research. However, methods for induction of diabetes are conflicting with regards to their efficacy, reproducibility and cost. A comparison of outcomes between the diabetic models is still unknown, especially full-term pregnancy.To understand the comparison, we analyzed the streptozotocin (STZ)-induced diabetes at three life-different moments during the neonatal period in Sprague-Dawley female rats: at the first (D1), second (D2) and fifth (D5) day of postnatal life. At adulthood (90 days; D90), the animals were submitted to an oral glucose tolerance test (OGTT) for diabetic status confirmation. The diabetic and control rats were mated and sacrificed at full-term pregnancy for different analyses. Group D1 presented a higher mortality percentage after STZ administration than groups D2 and D5. All diabetic groups presented higher blood glucose levels as compared to those of the control group, while group D5 had higher levels of glycemia compared with other groups during OGTT. The diabetic groups showed impaired reproductive outcomes compared with the control group. Group D1 had lower percentages of mated rats and D5 showed a lower percentage of a full-term pregnancy. Besides that, these two groups also showed the highest percentages of inadequate fetal weight. In summary, although all groups fulfill the diagnosis criteria for diabetes in adult life, in our investigation diabetes induced on D5 presents lower costs and higher efficacy and reproducibility for studies involving diabetes-complicated pregnancy.
- MeSH
- Diabetes Mellitus, Experimental * MeSH
- Insulin MeSH
- Blood Glucose MeSH
- Rats MeSH
- Rats, Sprague-Dawley MeSH
- Reproducibility of Results MeSH
- Streptozocin MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The effectiveness of cell transplantation can be improved by optimization of the transplantation site. For some types of cells that form highly oxygen-demanding tissue, e.g., pancreatic islets, a successful engraftment depends on immediate and sufficient blood supply. This critical point can be avoided when cells are transplanted into a bioengineered pre-vascularized cavity which can be formed using a polymer scaffold. In our study, we tested surface-modified poly(lactide-co-caprolactone) (PLCL) capsular scaffolds containing the pro-angiogenic factor VEGF. After each modification step (i.e., amination and heparinization), the surface properties and morphology of scaffolds were characterized by ATR-FTIR and XPS spectroscopy, and by SEM and AFM. All modifications preserved the gross capsule morphology and maintained the open pore structure. Optimized aminolysis conditions decreased the Mw of PLCL only up to 10% while generating a sufficient number of NH2 groups required for the covalent immobilization of heparin. The heparin layer served as a VEGF reservoir with an in vitro VEGF release for at least four weeks. In vivo studies revealed that to obtain highly vascularized PLCL capsules (a) the optimal VEGF dose for the capsule was 50 μg and (b) the implantation time was four weeks when implanted into the greater omentum of Lewis rats; dense fibrous tissue accompanied by vessels completely infiltrated the scaffold and created sparse granulation tissue within the internal cavity of the capsule. The prepared pre-vascularized pouch enabled the islet graft survival and functioning for at least 50 days after islet transplantation. The proposed construct can be used to create a reliable pre-vascularized pouch for cell transplantation.
- MeSH
- Bioengineering * MeSH
- Diabetes Mellitus, Experimental chemically induced metabolism pathology MeSH
- Neovascularization, Physiologic * MeSH
- Injections, Intraperitoneal MeSH
- Blood Glucose analysis MeSH
- Rats MeSH
- Molecular Structure MeSH
- Polyesters chemistry metabolism MeSH
- Rats, Inbred Lew MeSH
- Streptozocin administration & dosage MeSH
- Capsules chemistry metabolism MeSH
- Islets of Langerhans Transplantation * MeSH
- Vascular Endothelial Growth Factors chemistry metabolism MeSH
- Particle Size MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The aqueous extract of Cichorium intybus (CIE) leaves have shown the properties of protecting against pancreatic β-cell damage by streptozotocin (STZ), but the molecular mechanisms of its protection are not completely elucidated yet. Our current study focuses on elucidating the mechanisms of these preventive effects of CIE in MIN6 cells and an in-vivo model of Wistar rats. CIE offers protection against STZ in MIN6 cells by reducing the pro-oxidants and increasing the activity of the antioxidant enzymes. In vitro results also indicated that CIE inhibited cytotoxicity, reduced Reactive oxygen species (ROS), maintained glucose-stimulated insulin secretion and reduced NF-κB p65 translocation into the nucleus. The group administered with a 250 mg/kg dose of CIE in vivo has shown an ability to maintain blood glucose level and also to preserve the number and morphology of pancreatic islets when compared to the diabetic group treated with STZ. Probably, active compounds like quercetin, rutin, and catechin present in CIE, preserve the integrity of pancreatic islets thereby protecting β-cells from the adverse effects of STZ.
Beta-hydroxy-beta-methyl butyrate (HMB) is a unique product of leucine catabolism with positive effects on protein balance. We have examined the effects of HMB (200 mg/kg/day via osmotic pump for 7 days) on rats with diabetes induced by streptozotocin (STZ, 100 mg/kg intraperitoneally). STZ induced severe diabetes associated with muscle wasting, decreased ATP in the liver, and increased α-ketoglutarate in muscles. In plasma, liver, and muscles increased branched-chain amino acids (BCAAs; valine, isoleucine, and leucine) and decreased serine. The decreases in mass and protein content of muscles and increases in BCAA concentration were more pronounced in extensor digitorum longus (fast-twitch muscle) than in soleus muscle (slow-twitch muscle). HMB infusion to STZ-treated animals increased glycemia and serine in the liver, decreased BCAAs in plasma and muscles, and decreased ATP in the liver and muscles. The effects of HMB on the weight and protein content of tissues were nonsignificant. We concluded that fast-twitch muscles are more sensitive to STZ than slow-twitch muscles and that HMB administration to STZ-treated rats has dual effects. Adjustments of BCAA concentrations in plasma and muscles and serine in the liver can be considered beneficial, whereas the increased glycemia and decreased ATP concentrations in the liver and muscles are detrimental.
- MeSH
- Amino Acids administration & dosage pharmacology MeSH
- Diabetes Mellitus, Type 1 chemically induced drug therapy metabolism MeSH
- Injections, Intraperitoneal MeSH
- Injections, Subcutaneous MeSH
- Liver drug effects metabolism MeSH
- Muscle, Skeletal drug effects metabolism MeSH
- Rats MeSH
- Rats, Wistar MeSH
- Streptozocin administration & dosage MeSH
- Valerates administration & dosage pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: The need of today's research is to develop successful and reliable diabetic animal models for understanding the disease susceptibility and pathogenesis. Enormous success of animal models had already been acclaimed for identifying key genetic and environmental factors like Idd loci and effects of microorganisms including the gut microbiota. Furthermore, animal models had also helped in identifying many therapeutic targets and strategies for immune-intervention. In spite of a quite success, we have acknowledged that many of the discovered immunotherapies are working on animals and did not have a significant impact on human. Number of animal models were developed in the past to accelerate drug discovery pipeline. However, due to poor initial screening and assessment on inequivalent animal models, the percentage of drug candidates who succeeded during clinical trials was very low. Therefore, it is essential to bridge this gap between pre-clinical research and clinical trial by validating the existing animal models for consistency. RESULTS AND CONCLUSION: In this review, we have discussed and evaluated the significance of animal models on behalf of published data on PUBMED. Amongst the most popular diabetic animal models, we have selected six animal models (e.g. BioBreeding rat, "LEW IDDM rat", "Nonobese Diabetic (NOD) mouse", "STZ RAT", "LEPR Mouse" and "Zucker Diabetic Fatty (ZDF) rat" and ranked them as per their published literature on PUBMED. Moreover, the vision and brief imagination for developing an advanced and robust diabetic model of 21st century was discussed with the theme of one miceone human concept including organs-on-chips.
- MeSH
- Diabetes Mellitus, Type 2 chemically induced drug therapy genetics MeSH
- Species Specificity MeSH
- Diabetes Mellitus, Experimental chemically induced drug therapy MeSH
- Hypoglycemic Agents pharmacology MeSH
- Humans MeSH
- Mice, Mutant Strains MeSH
- Mice, Inbred C57BL MeSH
- Mice, Inbred NOD MeSH
- Rats, Inbred BB MeSH
- Rats, Inbred Lew MeSH
- Rats, Zucker MeSH
- Forecasting MeSH
- Drug Evaluation, Preclinical trends MeSH
- Streptozocin MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH