Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.
- MeSH
- chromatin * metabolismus MeSH
- DNA vazebné proteiny metabolismus genetika MeSH
- dvouřetězcové zlomy DNA * MeSH
- endodeoxyribonukleasy * metabolismus genetika MeSH
- exodeoxyribonukleasy metabolismus genetika MeSH
- meióza * genetika MeSH
- mutace MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae cytologie genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.
Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.
- MeSH
- DNA opravný a rekombinační protein Rad52 metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-ligasy metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- endonukleasy genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- HeLa buňky MeSH
- helikasy RecQ metabolismus fyziologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- R-smyčka genetika fyziologie MeSH
- rekombinasa Rad51 genetika metabolismus fyziologie MeSH
- replikace DNA genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.
- MeSH
- časové faktory MeSH
- chromozomální nestabilita MeSH
- cyklin-dependentní kinasy metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA biosyntéza genetika MeSH
- endodeoxyribonukleasy metabolismus MeSH
- endonukleasy genetika metabolismus MeSH
- fosforylace MeSH
- fragilní místa na chromozomu * MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- helikasy RecQ genetika metabolismus MeSH
- lidé MeSH
- mitóza * MeSH
- oprava DNA * MeSH
- poškození DNA MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikační počátek * MeSH
- RNA interference MeSH
- segregace chromozomů MeSH
- transfekce MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51(T131P) mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.
- MeSH
- časové faktory MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA-polymerasa I metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- DNA biosyntéza genetika MeSH
- endodeoxyribonukleasy genetika metabolismus MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- nestabilita genomu MeSH
- protein BRCA2 genetika metabolismus MeSH
- proteiny Xenopus genetika metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA * MeSH
- replikační počátek MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Xenopus laevis genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tomato multifunctional nuclease TBN1 belongs to the type I nuclease family, which plays an important role in apoptotic processes and cell senescence in plants. The newly solved structure of the N211D mutant is reported. Although the main crystal-packing motif (the formation of superhelices) is conserved, the details differ among the known structures. A phosphate ion was localized in the active site of the enzyme. The binding of the surface loop to the active centre is stabilized by the phosphate ion, which correlates with the observed aggregation of TBN1 in phosphate buffer. The conserved binding of the surface loop to the active centre suggests biological relevance of the contact in a regulatory function or in the formation of oligomers.
- MeSH
- endodeoxyribonukleasy chemie genetika metabolismus MeSH
- fosfáty metabolismus MeSH
- krystalizace MeSH
- molekulární sekvence - údaje MeSH
- multienzymové komplexy chemie genetika metabolismus MeSH
- rostlinné proteiny chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- Solanum lycopersicum enzymologie genetika MeSH
- vazebná místa fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.
- MeSH
- antigeny nádorové chemie genetika metabolismus MeSH
- apoptóza MeSH
- buněčné jádro enzymologie patologie MeSH
- časové faktory MeSH
- DNA vazebné proteiny chemie genetika metabolismus MeSH
- DNA-topoisomerasy typu II chemie genetika metabolismus MeSH
- endodeoxyribonukleasy chemie genetika metabolismus MeSH
- HeLa buňky MeSH
- histony chemie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- konfokální mikroskopie MeSH
- konformace proteinů MeSH
- lidé MeSH
- mapování interakce mezi proteiny MeSH
- molekulární modely MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- restrukturace chromatinu MeSH
- rezonanční přenos fluorescenční energie MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The budding yeast Srs2 protein possesses 3' to 5' DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
- MeSH
- delece genu MeSH
- DNA-helikasy genetika metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- exodeoxyribonukleasy metabolismus MeSH
- homologní rekombinace * MeSH
- jednovláknová DNA chemie metabolismus MeSH
- křížová struktura DNA chemie metabolismus MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikace DNA * MeSH
- replikační protein A metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The terminal chromatin structures at the ends of eukaryotic chromosomes, the telomeres, are a focus of intensive research due to their importance for the maintenance of chromosome integrity. Their shortening due to incomplete replication functions as a molecular clock counting the number of cell divisions, and ultimately results in cell-cycle arrest and cellular senescence. Telomere shortening can be compensated by the nucleoprotein enzyme complex called telomerase, which is able to extend shortened telomeres. In humans, only embryonic and germ cells show telomerase activity that is sufficient for telomere length stability and cellular immortality. Unfortunately, telomerase is activated in cancer cells, which, thus, achieve unlimited growth and a malignant phenotype. Even if there were no any other links of telomere biology to other essential processes in the cell nucleus such as DNA repair, chromosome positioning, and nuclear architecture in mitosis and meiosis, the close connection of telomere biology to aging and cancer makes telomeres and techniques for their analysis important enough from the point of view of us, mortal and disease-prone people. In this chapter, we describe the most common types of analyses used in telomere biology: screening for typical and variant telomeric sequences, determination of telomere lengths, and measurement of telomerase activity.
- MeSH
- buněčný cyklus MeSH
- chromozomy ultrastruktura MeSH
- endodeoxyribonukleasy metabolismus MeSH
- fenotyp MeSH
- genetické techniky MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- oprava DNA MeSH
- polymerázová řetězová reakce MeSH
- restrikční enzymy metabolismus MeSH
- sefarosa chemie MeSH
- stárnutí buněk MeSH
- telomerasa metabolismus MeSH
- telomery ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH