Advancements in small-molecule research have created the need for sensitive techniques to accurately study biological processes in living systems. Fluorescent-labeled probes have become indispensable tools, particularly those that use boron-dipyrromethene (BODIPY) dyes. Terpenes and terpenoids are organic compounds found in nature that offer diverse biological activities, and BODIPY-based probes play a crucial role in studying these compounds. Monoterpene-BODIPY conjugates have exhibited potential for staining bacterial and fungal cells. Sesquiterpene-BODIPY derivatives have been used to study sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), indicating their potential for drug development. Owing to their unique properties, diterpenes have been investigated using BODIPY conjugates to evaluate their mechanisms of action. Triterpene-BODIPY conjugates have been synthesized for biological studies, with different spacers affecting their cytotoxicity. Fluorescent probes, inspired by terpenoid-containing vitamins, have also been developed. Derivatives of tocopherol, coenzyme Q10, and vitamin K1 can provide insights into their oxidation-reduction abilities. All these probes have diverse applications, including the study of cell membranes to investigate immune responses and antioxidant properties. Further research in this field can help better understand and use terpenes and terpenoids in various biological contexts.
- MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- sloučeniny boru * chemie farmakologie MeSH
- terpeny * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
In this review, we collected and presented evidence from the scientific literature regarding the biotechnological production and applications of limonene and its oxidative derivates in various fields such as food, pharmaceutical, cosmetic or polymer industries. Limonene biotransfor-mations may be regarded as biotechnological processes aligned to sustainable development. Advantages associated with these bioprocesses include the use of by-products as raw materials, mild reaction conditions, high regio-and stereoselectivity and the production of value-added prod-ucts. The biological activities of limonene and its oxidative derivates, such as carveol, carvone, limonene-1,2-diol, α-terpineol, or perillyl alcohol, suggest that the terpene biotechnology is becoming a promising and prosperous science.
α-Terpineol, terpinen-4-ol, and δ-terpineol, isomers of terpineol, are among the compounds that give Cinnamomum longepaniculatum leaf oil its distinguished pleasant smell. The objective of this study was to evaluate the antimicrobial activity of these three isomeric terpineols. The determination of antibacterial activity was based on the minimum inhibition concentration (MIC) and minimum bactericide concentration (MBC). Changes in time-kill curve, alkaline phosphatase (AKP), UV-absorbing material, membrane potential, and scanning electron microscopy (SEM) were measured to elucidate the possible antimicrobial mechanism. α-Terpineol, terpinen-4-ol, and δ-terpineol demonstrated good inhibitory effects against several gram-negative bacteria, particularly Shigella flexneri. MIC and MBC of α-terpineol and terpinen-4-ol were similar (0.766 mg/mL and 1.531 mg/mL, respectively) for S. flexneri, while the MIC and MBC values of δ-terpineol were 0.780 mg/mL and 3.125 mg/mL, respectively. Time-kill curves showed that the antibacterial activities of the tested compounds were in a concentration-dependent manner. Release of nucleic acids and proteins along with a decrease in membrane potential proved that α-terpineol, terpinen-4-ol, and δ-terpineol could increase the membrane permeability of Shigella flexneri. Additionally, the release of AKP suggested that the cell wall was destroyed. SEM analysis further confirmed that S. flexneri cell membranes were damaged by α-terpineol, terpinen-4-ol, and δ-terpineol. Our research suggests that these three isomeric terpineols have the potential of being used as natural antibacterial agents by destroying the cell membrane and wall, resulting in cell death. However, the specific antibacterial activity differences need further investigation.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- buněčná stěna účinky léků MeSH
- gramnegativní bakterie účinky léků MeSH
- isomerie MeSH
- listy rostlin chemie MeSH
- membránové potenciály účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- oleje prchavé chemie farmakologie MeSH
- skořicovník chemie MeSH
- terpeny chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
- MeSH
- alkaloidy chemie farmakologie MeSH
- antivirové látky chemie terapeutické užití MeSH
- COVID-19 prevence a kontrola MeSH
- farmakoterapie COVID-19 MeSH
- flavonoidy chemie farmakologie MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- rostlinné extrakty chemie farmakologie terapeutické užití MeSH
- terpeny chemie farmakologie MeSH
- vizualizace dat MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this work, 35 new derivatives of betulonic, dihydrobetulonic and ursonic acid were prepared including 30 aminothiazoles and all of them were tested for their in vitro cytotoxic activity in eight cancer cell lines and two non-cancer fibroblasts. Compounds with the IC50 below 5 μM in CCRF-CEM cells and low toxicity in non-cancer fibroblasts (4m, 5c, 5m, 6c, 6m, 7b, and 7c) were further subjected to tests of pharmacological parameters yielding the final set for advanced biological evaluation (4m, 5m, 6m, and 7b). It was proved by several methods, that all of them trigger apoptosis via the intrinsic pathway and derivatives 5m and 7b are the most effective (IC50 2.4 μM and 3.6 μM). They are the best candidates to become potentially new anticancer drugs and will be subjected to in vivo tests in mice. In addition, compounds 6b and 6c deserve more attention because their activity is not limited only to chemosensitive CCRF-CEM cell line. Specifically, compound 6b is highly active against K562 leukemic cell line (0.7 μM) and its IC50 activity in colon cancer HCT116 cell line is 1.0 μM. Compound 6c is active in both normal K562 and resistant K562-TAX cell lines (IC50 3.4 μM and 5.4 μM) and both colon cancer cell lines (HCT116 and HCT116p53-/-, IC50 3.5 μM and 3.4 μM).
- MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- fibroblasty účinky léků MeSH
- kultivované buňky MeSH
- kyselina olenalová analogy a deriváty chemie farmakologie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mikrozomy chemie metabolismus MeSH
- molekulární struktura MeSH
- proliferace buněk účinky léků MeSH
- terpeny chemická syntéza chemie farmakologie MeSH
- thiazoly chemická syntéza chemie farmakologie MeSH
- triterpeny chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Terpenoids, one of the major components of essential oils, are known to exert potent antifungal activity against yeast Saccharomyces cerevisiae. They have been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, their mechanism of action remains elusive. In order to use terpenoids as the antimicrobial and antifungal agents in food preservation in a rational way, a good knowledge of their mode of action is required. We hypothesized that the cellular membrane is the main target site for the antifungal agents, and that structural properties of these agents are key to penetrate and act upon phospholipid bilayers. In this study, we thus aimed to study the effect of terpenoids on the cell membrane integrity, with the focus on both their structural properties, such as the presence of aromatic ring or hydroxyl group; and their hydrophobicity, as a consequence of these structural features. We first uncovered the antifungal properties of phenolic terpenoids thymol, carvacrol and eugenol, cyclic terpenes limonene, carveol, and α-pinene, in addition to the closely related compounds of different chemical structures. We then examined the cell membrane deterioration upon the addition of these reagents. Our results demonstrate that the presence of a phenolic -OH moiety is crucial, and hydrophobicity gained by the aromatic ring structure contributes to the ability of penetration and damaging yeast plasma membrane to achieve high antifungal activity.
- MeSH
- antifungální látky chemie farmakologie MeSH
- buněčná membrána účinky léků metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- oleje prchavé chemie farmakologie MeSH
- permeabilita buněčné membrány účinky léků MeSH
- Saccharomyces cerevisiae účinky léků metabolismus MeSH
- terpeny chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- MeSH
- flavonoidy biosyntéza chemie metabolismus MeSH
- genová ontologie MeSH
- Humulus chemie metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- propiofenony chemie metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenování transkriptomu MeSH
- terpeny chemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transkriptom genetika MeSH
- trichomy genetika metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
Skin penetration/permeation enhancers are compounds that improve (trans)dermal drug delivery. We designed hybrid terpene-amino acid enhancers by conjugating natural terpenes (citronellol, geraniol, nerol, farnesol, linalool, perillyl alcohol, menthol, borneol, carveol) or cinnamyl alcohol with 6-(dimethylamino)hexanoic acid through a biodegradable ester linker. The compounds were screened for their ability to increase the delivery of theophylline and hydrocortisone through and into human skin ex vivo. The citronellyl, bornyl and cinnamyl esters showed exceptional permeation-enhancing properties (enhancement ratios up to 82) while having low cellular toxicities. The barrier function of enhancer-treated skin (assessed by transepidermal water loss and electrical impedance) recovered within 24 h. Infrared spectroscopy suggested that these esters fluidized the stratum corneum lipids. Furthermore, the citronellyl ester increased the epidermal concentration of topically applied cidofovir, which is a potent antiviral and anticancer drug, by 15-fold. In conclusion, citronellyl 6-(dimethylamino)hexanoate is an outstanding enhancer with an advantageous combination of properties, which may improve the delivery of drugs that have a limited ability to cross biological barriers.
- MeSH
- alkoholy chemie farmakologie MeSH
- aplikace kožní MeSH
- buňky 3T3 MeSH
- chemie farmaceutická MeSH
- cidofovir aplikace a dávkování chemie farmakokinetika MeSH
- epidermis účinky léků metabolismus MeSH
- estery chemie farmakologie MeSH
- farmaceutické pomocné látky chemie farmakologie MeSH
- hydrokortison aplikace a dávkování chemie farmakokinetika MeSH
- keratinocyty MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- monoterpeny chemie MeSH
- myši MeSH
- permeabilita účinky léků MeSH
- perspiratio insensibilis účinky léků MeSH
- příprava léků metody MeSH
- terpeny chemie farmakologie MeSH
- testy akutní toxicity MeSH
- theofylin aplikace a dávkování chemie farmakokinetika MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH