BACKGROUND: Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. METHODS: To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. RESULTS: The GWAx-GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. CONCLUSIONS: This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development.
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * epidemiologie genetika patologie MeSH
- zárodečné buňky patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have clinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches. METHODS: Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status. RESULTS: Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset. At an optimal cut-point of probability-score = 0.335, sensitivity = 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients. CONCLUSIONS: We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC. IMPACT: The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
- MeSH
- analýza přežití MeSH
- erbB receptory genetika MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * epidemiologie genetika MeSH
- nemalobuněčný karcinom plic * epidemiologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- EGFR protein, human MeSH Prohlížeč
- erbB receptory MeSH
Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04-75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71-8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3' UTR (OR 4.33, 95%CI 2.03-9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73-11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33-5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles.
- Publikační typ
- časopisecké články MeSH
Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- karcinom z renálních buněk epidemiologie genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- nádory ledvin epidemiologie genetika MeSH
- odds ratio MeSH
- sexuální faktory MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
- MeSH
- celogenomová asociační studie MeSH
- diabetes mellitus 2. typu komplikace MeSH
- genetické markery MeSH
- index tělesné hmotnosti MeSH
- inzulin krev MeSH
- karcinom z renálních buněk etiologie genetika MeSH
- krevní glukóza analýza MeSH
- krevní tlak MeSH
- lidé MeSH
- lipidy krev MeSH
- mendelovská randomizace MeSH
- nádory ledvin etiologie genetika MeSH
- obezita komplikace genetika MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- genetické markery MeSH
- inzulin MeSH
- krevní glukóza MeSH
- lipidy MeSH
BACKGROUND: Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior. METHODS: Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.1 exome capture. Filtering was based on enrichment of rare and potential deleterious variants in cases (risk alleles) or controls (protective alleles). Allelic association analyses of single-variant and gene-based burden tests of multiple variants were performed. Promising candidates were tested in two independent validation studies with a total of 1773 case patients and 1123 controls. RESULTS: We identified 48 rare variants with deleterious effects in the discovery analysis and validated 12 of the 43 candidates that were covered in the validation platforms. The top validated candidates included one well-established truncating variant, namely, BRCA2, DNA repair associated gene (BRCA2) K3326X (OR = 2.36, 95% confidence interval [CI]: 1.38-3.99), and three newly identified variations, namely, lymphotoxin beta gene (LTB) p.Leu87Phe (OR = 7.52, 95% CI: 1.01-16.56), prolyl 3-hydroxylase 2 gene (P3H2) p.Gln185His (OR = 5.39, 95% CI: 0.75-15.43), and dishevelled associated activator of morphogenesis 2 gene (DAAM2) p.Asp762Gly (OR = 0.25, 95% CI: 0.10-0.79). Burden tests revealed strong associations between zinc finger protein 93 gene (ZNF93), DAAM2, bromodomain containing 9 gene (BRD9), and the gene LTB and LC susceptibility. CONCLUSION: Our results extend the catalogue of regions associated with LC and highlight the importance of germline rare coding variants in LC susceptibility.
- Klíčová slova
- Exome sequencing, Lung cancer, Rare variants, Susceptibility loci,
- MeSH
- celogenomová asociační studie metody MeSH
- dospělí MeSH
- genetická variace genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory plic genetika patologie MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Publikační typ
- časopisecké články MeSH
- tisková chyba MeSH
Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.
- Klíčová slova
- Hypoxia-inducible factor, Integrated analysis, Lung adenocarcinoma, Network analysis, Non-small cell lung cancer,
- MeSH
- adenokarcinom plic MeSH
- adenokarcinom genetika patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- nádory plic genetika patologie MeSH
- nemalobuněčný karcinom plic genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- transkripční faktory bHLH genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endothelial PAS domain-containing protein 1 MeSH Prohlížeč
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- HIF1A protein, human MeSH Prohlížeč
- transkripční faktory bHLH MeSH
BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.
- Klíčová slova
- Genetic variants, Mendelian randomization, Renal cell carcinoma, Risk, Telomere length,
- MeSH
- celogenomová asociační studie MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- hodnocení rizik MeSH
- homeostáza telomer * MeSH
- jednonukleotidový polymorfismus * MeSH
- karcinom z renálních buněk krev genetika patologie MeSH
- leukocyty chemie MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- nádory ledvin krev genetika patologie MeSH
- odds ratio MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- telomery genetika patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations using a pipeline specifically designed to accurately detect variants at very low fractions. We detected TP53 mutations in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC patients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer controls. The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests.
- Klíčová slova
- Early detection, Screening, Small-cell lung cancer, TP53 mutations, cfDNA, ctDNA,
- MeSH
- časná detekce nádoru MeSH
- DNA nádorová * krev MeSH
- leukocyty metabolismus MeSH
- lidé MeSH
- malobuněčný karcinom plic krev diagnóza genetika MeSH
- mutace MeSH
- nádorové biomarkery * MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory plic krev diagnóza genetika MeSH
- staging nádorů MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA nádorová * MeSH
- nádorové biomarkery * MeSH
- nádorový supresorový protein p53 MeSH