Bipolar disorder is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.8 million controls), combining clinical, community and self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a fourfold increase over previous findings3, and identified an ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of bipolar disorder. Genes prioritized through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in cases with bipolar disorder4, highlighting convergence of common and rare variant signals. We report differences in the genetic architecture of bipolar disorder depending on the source of patient ascertainment and on bipolar disorder subtype (type I or type II). Several analyses implicate specific cell types in the pathophysiology of bipolar disorder, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide additional insights into the genetic architecture and biological underpinnings of bipolar disorder.
- Publikační typ
- časopisecké články MeSH
Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 17 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, CRTC3, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of BD polygenic risk scores across diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- hipokampus diagnostické zobrazování patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování patologie MeSH
- neurozobrazování MeSH
- průřezové studie MeSH
- reprodukovatelnost výsledků MeSH
- schizofrenie * diagnostické zobrazování patologie MeSH
- šedá hmota * diagnostické zobrazování patologie MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
- Klíčová slova
- MRI, bipolar disorder, body mass index, obesity, principal component analysis, psychiatry,
- MeSH
- analýza hlavních komponent * MeSH
- bipolární porucha * diagnostické zobrazování farmakoterapie patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- obezita * diagnostické zobrazování MeSH
- schizofrenie diagnostické zobrazování patologie farmakoterapie patofyziologie MeSH
- shluková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- Klíčová slova
- ENIGMA, artificial intelligence, brain gray matter, schizophrenia, structural MRI, subtype,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
BACKGROUND: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
- Klíčová slova
- Body mass index, antipsychotics, bipolar disorders, cortical thickness, heterogeneity, lithium, obesity, surface area,
- MeSH
- bipolární porucha * patologie diagnostické zobrazování MeSH
- dospělí MeSH
- index tělesné hmotnosti * MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozková kůra * diagnostické zobrazování patologie MeSH
- obezita * patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patologie MeSH
- prospektivní studie MeSH
- schizofrenie * MeSH
- senioři MeSH
- stárnutí MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N = 3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.
- Klíčová slova
- Bipolar disorder, Major depression, Personality, Polygenic score, Schizophrenia, Suicidal behavior,
- MeSH
- depresivní porucha unipolární * psychologie MeSH
- duševní zdraví MeSH
- fenotyp MeSH
- lidé MeSH
- osobnost genetika MeSH
- sebevražedné myšlenky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. METHODS: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.
- Klíčová slova
- Cortical growth, Cortical surface area, Mental illness, Neurodevelopment, Neurogenesis, Psychiatric disorders,
- MeSH
- bipolární porucha * MeSH
- depresivní porucha unipolární * patologie MeSH
- dítě MeSH
- hyperkinetická porucha * MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozková kůra MeSH
- novorozenec MeSH
- poruchy autistického spektra * genetika patologie MeSH
- předčasný porod * patologie MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.
- Klíčová slova
- bipolar disorders, body mass index, cortical thickness, heterogeneity, obesity, surface area,
- MeSH
- bipolární porucha * diagnóza MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- obezita komplikace diagnostické zobrazování MeSH
- shluková analýza MeSH
- spánkový lalok patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH