As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
- Klíčová slova
- MYB transcription factor, development and remodelling, mandibular alveolar bone, metalloproteinases, osteogenesis,
- Publikační typ
- časopisecké články MeSH
During bone development, FasL acts not only through the traditional apoptotic mechanism regulating the amount of bone-resorbing osteoclasts, but there is also growing evidence about its effect on cell differentiation. Expression of osteoblastic factors was followed in non differentiated and differentiating primary calvarial cells obtained from FasL-deficient (gld) mice. The gld cells showed decreased expression of the key osteoblastic molecules osteocalcin (Ocn), osteopontin (Opn), and alkaline phosphatase (Alpl) in both groups. Notably, receptor activator of nuclear factor kappa-B ligand (Rankl) was unchanged in non-differentiated gld vs. wild type (wt) cells but decreased in differentiating gld cells. Osteoprotegerin (Opg) in the gld samples was increased in both groups. Opg vs. Rankl expression levels favored Opg in the case of non-differentiated cells but Rankl in differentiating ones. These results expand information on the involvement of FasL in non-apoptotic cell pathways related to osteoblastogenesis and consequently also osteoclastogenesis and pathologies such as osteoporosis.
- MeSH
- buněčná diferenciace MeSH
- glykoproteiny * metabolismus MeSH
- kosti a kostní tkáň metabolismus MeSH
- myši MeSH
- osteoblasty MeSH
- osteogeneze * MeSH
- osteoklasty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoproteiny * MeSH
Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.
- Klíčová slova
- Caspase-9, Chondrogenic differentiation, Micromasses, Mmp-9, Non-apoptotic functions,
- MeSH
- buněčná diferenciace MeSH
- chondrocyty * MeSH
- chondrogeneze * fyziologie MeSH
- inhibitory kaspas metabolismus farmakologie MeSH
- kaspasa 9 genetika metabolismus MeSH
- kultivované buňky MeSH
- myši MeSH
- osteogeneze MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory kaspas MeSH
- kaspasa 9 MeSH
Mammalian Meckel´s cartilage is a temporary structure associated with mandible development. Notably, its elimination is not executed by apoptosis, and autophagy was suggested as the major mechanism. Simultaneous reports point to pro-apoptotic caspases as novel participants in autophagic pathways in general. The aim of this research was to find out whether activation of pro-apoptotic caspases (-2, -3, -6, -7, -8 and -9) was associated with autophagy of the Meckel´s cartilage chondrocytes. Active caspases were examined in serial histological sections of mouse mandible using immunodetection and were correlated with incidence of autophagy based on Beclin-1 expression. Caspase-2 and caspase-8 were found in Beclin-1 positive regions, whereas caspase-3, -6, -7 and -9 were not present. Caspase-8 was further correlated with Fas/FasL and HIF-1alpha, potential triggers for its activation. Some Fas and FasL positivity was observed in the chondrocytes but caspase-8 activation was found also in FasL deficient cartilage. HIF-1alpha was abundantly present in the hypertrophic chondrocytes. Taken together, caspase-8 activation in the Meckel´s cartilage was demonstrated for the first time. Caspase-8 and caspase-2 were the only pro-apoptotic caspases detected in the Beclin-1 positive segment of the cartilage. Activation of caspase-8 appears FasL/Fas independent but may be switched on by HIF-1alpha.
- MeSH
- apoptóza fyziologie MeSH
- autofagie fyziologie MeSH
- kaspasy metabolismus MeSH
- kloubní chrupavka cytologie metabolismus MeSH
- lidé MeSH
- mandibula cytologie metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kaspasy MeSH
Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.
- Klíčová slova
- Apoptosis, Extrinsic apoptotic factors, Fas pathway, Forelimb development, Interdigital,
- MeSH
- antigeny CD95 analýza genetika metabolismus MeSH
- apoptóza * MeSH
- kaspasa 8 analýza genetika metabolismus MeSH
- ligand Fas nedostatek genetika metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přední končetina cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD95 MeSH
- Fas protein, mouse MeSH Prohlížeč
- kaspasa 8 MeSH
- ligand Fas MeSH
The transcription factor c-MYB is a well-known marker of undifferentiated cells such as haematopoietic cell precursors, but recently it has also been observed in differentiated cells that produce hard tissues. Our previous findings showed the presence of c-MYB in intramembranous bones and its involvement in the chondrogenic steps of endochondral ossification, where the up-regulation of early chondrogenic markers after c-myb overexpression was observed. Since we previously detected c-MYB in osteoblasts, we aimed to analyse the localisation of c-MYB during later stages of endochondral bone formation and address its function during bone matrix production. c-MYB-positive cells were found in the chondro-osseous junction zone in osteoblasts of trabecular bone as well as deeper in the zone of ossification in cells of spongy bone. To experimentally evaluate the osteogenic potential of c-MYB during endochondral bone formation, micromasses derived from embryonic mouse limb buds were established. Nuclear c-MYB protein expression was observed in long-term micromasses, especially in the areas around nodules. c-myb overexpression induced the expression of osteogenic-related genes such as Bmp2, Comp, Csf2 and Itgb1. Moreover, alizarin red staining and osteocalcin labelling promoted mineralised matrix production in c-myb-overexpressing cultures, whereas downregulation of c-myb by siRNA reduced mineralised matrix production. In conclusion, c-Myb plays a role in the osteogenesis of long bones by inducing osteogenic genes and causing the enhancement of mineral matrix production. This action of the transcription factor c-Myb might be of interest in the future for the establishment of novel approaches to tissue regeneration.
- Klíčová slova
- Micromass cultures, Mineralised matrix, Mouse limbs, Osteogenesis, PCR Array,
- MeSH
- buněčná diferenciace fyziologie MeSH
- chondrogeneze fyziologie MeSH
- kosti a kostní tkáň metabolismus MeSH
- myši MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze fyziologie MeSH
- osteokalcin metabolismus MeSH
- protoonkogenní proteiny c-myb genetika metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- osteokalcin MeSH
- protoonkogenní proteiny c-myb MeSH
c-Fos homozygous mice lack osteoclasts with a failure of the teeth to erupt and with an arrest of root development. Here, we characterize the defects associated with the failure in root development and the loss of the tooth-bone interface, and we investigate the underlying causes. We show that, while homozygous c-Fos mice have no multinucleated osteoclasts, heterozygous mice have a reduction in the number of osteoclasts with a reduction in the tooth-bone interface during development and subtle skeletal defects postnatally. In the homozygous mutants bone is found to penetrate the tooth, particularly at the apical end, physically disrupting the root forming HERS (Hertwig's epithelial root sheath) cells. The cells of the HERS continue to proliferate but cannot extend downward due to the presence of bone, leading to a loss of root formation. Tooth germ culture showed that the developing tooth invaded the static bone in mutant tissue, rather than the bone encroaching on the tooth. Although c-Fos has been shown to be expressed in developing teeth, the defect in maintenance of the tooth-bone interface appears to be driven solely by the lack of osteoclasts, as this defect can be rescued in the presence of donor osteoclasts. The rescue suggests that signals from the tooth recruit osteoclasts to clear the bone from around the tooth, allowing the tooth to grow, form roots, and later erupt.
- Klíčová slova
- HERS, bone, osteopetrosis, remodeling, rescue, tooth,
- MeSH
- abnormality čelisti genetika patofyziologie MeSH
- homozygot MeSH
- maxilofaciální vývoj genetika fyziologie MeSH
- mutantní kmeny myší MeSH
- myši inbrední C57BL genetika MeSH
- myši MeSH
- osteoklasty fyziologie MeSH
- prořezávání zubů genetika fyziologie MeSH
- protoonkogenní proteiny c-fos genetika fyziologie MeSH
- zubní kořen abnormality růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protoonkogenní proteiny c-fos MeSH
Dental hard tissues are formed particularly by odontoblasts (dentin) and ameloblasts (enamel). Whereas the reparation of dentin is often observed, enamel does not regenerate in most species. However, in mouse incisor, a population of somatic stem cells in the cervical loop is responsible for the incisor regeneration. Understanding of the specificities of these cells is therefore of an interest in basic research as well as regenerative therapies. The Myb transcription factors are involved in essential cellular processes. B-Myb is often linked to the stem cell phenotype, and c-Myb expression marks undifferentiated and proliferating cells such as the stem cells. In the presented study, temporo-spatial expression of B-Myb and c-Myb proteins was correlated with localisation of putative somatic stem cells in the mouse incisor cervical loop by immunohistochemistry. B-Myb expression was localised mostly in the zone of transit-amplifying cells, and c-Myb was found in the inner enamel epithelium, the surrounding mesenchyme and in differentiated cells. Taken together, neither B-Myb nor c-Myb was exclusively present or abundant in the area of the incisor stem cell niche. Their distribution, however, supports recently reported novel functions of c-Myb in differentiation of hard tissue cells.
- MeSH
- buněčná diferenciace MeSH
- kmenové buňky cytologie MeSH
- mezoderm cytologie MeSH
- myši MeSH
- nika kmenových buněk fyziologie MeSH
- proliferace buněk MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogenní proteiny c-myb metabolismus MeSH
- řezáky anatomie a histologie embryologie MeSH
- trans-aktivátory metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zubní sklovina cytologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Mybl2 protein, mouse MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny c-myb MeSH
- trans-aktivátory MeSH
Caspases are key molecules of apoptosis and the inflammatory response. Up-regulation of the caspase cascade contributes to human pathologies such as neurodegenerative and immune disorders. Thus, blocking the excessive apoptosis by pharmacological inhibitors seems promising for therapeutic interventions in such diseases. Caspase inhibitors, both natural and artificial, have been used as research tools and have helped to define the role of the individual caspases in apoptosis and in non-apoptotic processes. Moreover, some caspase inhibitors have demonstrated their therapeutic efficiency in the reduction of cell death and inflammation in animal models of human diseases. However, no drug based on caspase inhibition has been approved on the market until now. Thus, the development of therapeutic approaches that specifically target caspases remains a great challenge and is now the focus of intense biological and clinical interest. Here, we provide a brief review of recent knowledge about pharmacological caspase inhibitors with special focus on their proposed clinical applications.
- MeSH
- apoptóza účinky léků MeSH
- inhibitory kaspas farmakologie terapeutické užití MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- zánět farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- inhibitory kaspas MeSH
- kaspasy MeSH
Apoptosis in hair follicles often is studied under pathological conditions; little is known about apoptotic mechanisms during normal hair follicle formation and maintenance. We investigated proteins of intrinsic apoptotic pathway, Bim and Puma, during hair follicle development and the first catagen stage using immunofluorescence to describe their expression patterns and to correlate them with apoptosis as determined by TUNEL assay. Both proteins were found in developing follicles. Bim and Puma overlapped apoptosis only partially during physiological apoptotic stage and they were present in non-apoptotic parts of the follicles. Our findings suggest that these primary apoptotic molecules participate in postnatal development and maintenance of hair follicles.
- Klíčová slova
- Bim, Puma, TUNEL, apoptosis, development, hair follicle, immunofluorescence,
- MeSH
- apoptóza fyziologie MeSH
- barvení a značení metody MeSH
- fluorescenční protilátková technika metody MeSH
- koncové značení zlomů DNA in situ metody MeSH
- membránové proteiny metabolismus MeSH
- myši MeSH
- nádorové supresorové proteiny metabolismus MeSH
- protein BCL2L11 MeSH
- proteiny regulující apoptózu metabolismus MeSH
- protoonkogenní proteiny metabolismus MeSH
- vlasový folikul cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Bcl2l11 protein, mouse MeSH Prohlížeč
- membránové proteiny MeSH
- nádorové supresorové proteiny MeSH
- protein BCL2L11 MeSH
- proteiny regulující apoptózu MeSH
- protoonkogenní proteiny MeSH
- PUMA protein, mouse MeSH Prohlížeč