A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.
- Klíčová slova
- HPTS, cataract surgery, fiber-optic sensor, pH,
- MeSH
- fakoemulzifikace * MeSH
- komorová voda MeSH
- koncentrace vodíkových iontů MeSH
- laserová terapie * MeSH
- lidé MeSH
- prospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.
Optical fibers have recently attracted a noticeable interest for biomedical applications because they provide a minimally invasive method for in vivo sensing, imaging techniques, deep-tissue photodynamic therapy or optogenetics. The silica optical fibers are the most commonly used because they offer excellent optical properties, and they are readily available at a reasonable price. The fused silica is a biocompatible material, but it is not bioresorbable so it does not decompose in the body and the fibers must be ex-planted after in vivo use and their fragments can present a considerable risk to the patient when the fiber breaks. In contrast, optical fibers made of phosphate glasses can bring many benefits because such glasses exhibit good transparency in ultraviolet-visible and near-infrared regions, and their solubility in water can be tailored by changing the chemical composition. The bioresorbability and toxicity of phosphate glass-based optical fibers were tested in vivo on male laboratory rats for the first time. The fiber was spliced together with a standard graded-index multi-mode fiber pigtail and an optical probe for in vitro pH measurement was prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method to demonstrate applicability and compatibility of the fiber with common fiber optics.
- Klíčová slova
- bioresorbable phosphate optical fiber, in vivo testing, pH sensing,
- MeSH
- fosfáty chemie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- krysa rodu Rattus MeSH
- optická vlákna * MeSH
- oxid křemičitý chemie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- oxid křemičitý MeSH
Recent outbreaks of foodborne illnesses have shown that foodborne bacterial pathogens present a significant threat to public health, resulting in an increased need for technologies capable of fast and reliable screening of food commodities. The optimal method of pathogen detection in foods should: (i) be rapid, specific, and sensitive; (ii) require minimum sample preparation; and (iii) be robust and cost-effective, thus enabling use in the field. Here we report the use of a SPR biosensor based on ultra-low fouling and functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes for the rapid and sensitive detection of bacterial pathogens in crude food samples utilizing a three-step detection assay. We studied both the surface resistance to fouling and the functional capabilities of these brushes with respect to each step of the assay, namely: (I) incubation of the sensor with crude food samples, resulting in the capture of bacteria by antibodies immobilized to the pCBAA coating, (II) binding of secondary biotinylated antibody (Ab2) to previously captured bacteria, and (III) binding of streptavidin-coated gold nanoparticles to the biotinylated Ab2 in order to enhance the sensor response. We also investigated the effects of the brush thickness on the biorecognition capabilities of the gold-grafted functionalized pCBAA coatings. We demonstrate that pCBAA-compared to standard low-fouling OEG-based alkanethiolate self-assemabled monolayers-exhibits superior surface resistance regarding both fouling from complex food samples as well as the non-specific binding of S-AuNPs. We further demonstrate that a SPR biosensor based on a pCBAA brush with a thickness as low as 20 nm was capable of detecting E. coli O157:H7 and Salmonella sp. in complex hamburger and cucumber samples with extraordinary sensitivity and specificity. The limits of detection for the two bacteria in cucumber and hamburger extracts were determined to be 57 CFU/mL and 17 CFU/mL for E. coli and 7.4 × 10(3) CFU/mL and 11.7 × 10(3)CFU/mL for Salmonella sp., respectively. In addition, we demonstrate the simultaneous detection of E. coli and Salmonella sp. in hamburger sample using a multichannel SPR biosensor having appropriate functional coatings.
- Klíčová slova
- Detection of bacterial pathogens, E. coli O157:H7, Food safety, Gold nanoparticles, Low-fouling biorecognition coatings, Polymer brushes, Surface plasmon resonance biosensor,
- MeSH
- biosenzitivní techniky * MeSH
- Escherichia coli O157 izolace a purifikace patogenita MeSH
- imobilizační protilátky chemie MeSH
- kontaminace potravin MeSH
- lidé MeSH
- limita detekce MeSH
- nemoci přenášené potravou diagnóza mikrobiologie MeSH
- potravinářská mikrobiologie * MeSH
- povrchová plasmonová rezonance MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imobilizační protilátky MeSH
- zlato MeSH
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues.
- Klíčová slova
- Arabidopsis thaliana, Fluorescence, HPTS, Tissue, pH,
- MeSH
- Arabidopsis metabolismus MeSH
- arylsulfonany chemie MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arylsulfonany MeSH
- fluorescenční barviva MeSH
- pyranine MeSH Prohlížeč