An accurate and coherent bacterial taxonomy is essential for studying the ecological aspects of microorganisms and for understanding microbial communities and their dynamics. The order Pseudomonadales is of particular importance in biological research due to its ability to interact with eukaryotic hosts, including taxa of clinical relevance (e.g.: Pseudomonas, Moraxella, Acinetobacter), or due to its functions in soil and water ecosystems. Despite their relevance, we have identified several inconsistencies in the organisation of genera within families in this order. Here, we perform comprehensive phylogenetic and phylogenomic analyses to reorganise these taxa. Average amino acid identity (AAI) values shared within and between families support our reclassifications. We propose seven new families, including new ecologically relevant families (e.g.: Oceanobacteraceae fam. nov.), as well as several taxonomic emendations. Our results also support the inclusion of Cellvibrionales and Oceanospirillales within Pseudomonadales. This revised organisation provides a robust delineation of these taxa into families, characterised by AAI values ranging from 60% to 77%. AAI distances between families are predominantly below 60%. This reclassification contributes to establishment of a more reliable taxonomic framework within Gammaproteobacteria, providing the basis for a more comprehensive understanding of their evolution.
- Klíčová slova
- Evolution, Family threshold, Gammaproteobacteria, Genomics, Pseudomonadales, Taxonomy,
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- Gammaproteobacteria genetika klasifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Plant species-rich systems tend to be more productive than depauperate ones. In agroecosystems, increasing crop plant diversity by including legumes often increases soil nitrogen (N) and improves soil fertility; however, such generality in outcomes of non-leguminous crop mixture is unknown. Here, through a meta-analysis of 174 individual cases, we explored the current global research trend of intercropping of exclusively non-leguminous crops (ICnl) and quantified its effect on agroecosystem productivity key metrics, for example crop plant health, soil chemistry, and microbial community under diverse experimental conditions. ICnl increased plant biomass and disease suppression and provided a notable yield advantage over monocultures. In addition to phosphorus and potassium, ICnl also increased plant-available soil N, which, along with increased soil microbial abundance, was positively associated with increased soil organic matter. These positive effects were more pronounced in experiments with long duration (> 1 yr), field soil conditions, and soil pH > 7. ICnl improves several crop productivity metrics, which could augment sustainable crop production, particularly when practiced for a long duration and in alkaline soils.
- Klíčová slova
- intercropping, legumes, plant interspecific interaction, soil chemistry, soil microbial community, sustainable agriculture,
- MeSH
- biomasa MeSH
- dusík MeSH
- fosfor MeSH
- pěstování plodin * metody MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- zemědělské plodiny * růst a vývoj MeSH
- zemědělství * metody MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- dusík MeSH
- fosfor MeSH
- půda * MeSH
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs. We have obtained and further enriched two ibuprofen-degrading microbial consortia from two unrelated wastewater treatment plants. We have also studied their ability to degrade the drug and the dynamics of the re-organisations of the genetic information responsible for its biodegradation among the species within the consortium. Our results show that genomic reorganisation within microorganisms and species rearrangements occur rapidly and efficiently during the selection process, which may be facilitated by plasmids and/or transposable elements located within the sequences. We show the evolution of at least two different plasmid backbones on samples from different locations, showing rearrangements of genomic information, including genes encoding activities for IBU degradation. As a result, we found variations in the expression pattern of the consortia after evolution under selective pressure, as an adaptation process to the new conditions. This work provides evidence for changes in the metagenomes of microbial communities that allow adaptation under a selective constraint -ibuprofen as a sole carbon source- and represents a step forward in knowledge that can inspire future biotechnological developments for drug bioremediation.
- Klíčová slova
- biodegradation, consortia evolution, emerging pollutants, ibuprofen, microbial ecology,
- MeSH
- Bacteria genetika metabolismus klasifikace MeSH
- biodegradace * MeSH
- genová přestavba MeSH
- ibuprofen * metabolismus MeSH
- metagenom MeSH
- mikrobiální společenstva * genetika MeSH
- odpadní voda mikrobiologie MeSH
- plazmidy * genetika MeSH
- přenos genů horizontální MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ibuprofen * MeSH
- odpadní voda MeSH
- transpozibilní elementy DNA MeSH
Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems. The main hypothesis of this work was that tree microbiomes concur to hydrocarbon biodegradation, and was tested through three case studies, which collectively investigated two tree micro-habitats (phyllosphere and tree cavity organic soil-TCOS) under various conditions representing diverse ecological scenarios, by applying different culture-based and molecular techniques and at different scales. The integration of all results provided a more comprehensive understanding of the role of microbiomes in urban trees. Firstly, bacterial strains isolated from the phyllosphere of Quercus ilex were characterized, indicating the presence of Plant-Growth Promoting bacteria and strains able to catabolize PAHs, particularly naphthalene and phenanthrene. Secondly, naphthalene biodegradation on artificially spiked Hedera helix leaves was quantified in greenhouse experiments on inoculated and untreated plants. The persistence of the inoculated strain and community structure of epiphytic bacteria were assessed by Illumina sequencing of V5-V6 hypervariable regions of 16S rRNA gene. Results showed that naphthalene degradation was initially faster on inoculated plants but later the degradation rates became similar, probably because bacterial populations with hydrocarbon-degrading abilities gradually developed also on non-inoculated plants. Finally, we explored bacterial and fungal biodiversity hosted by TCOS samples, collected from six large trees located in an urban park and belonging to different species. Microbial communities were characterized by Illumina sequencing of V5-V6 hypervariable regions of bacterial gene 16S rRNA and of fungal ITS1. Results indicated TCOS as a distinct substrate, whose microbiome is determined both by the host tree and by canopy environmental conditions and has a pronounced aerobic hydrocarbon degradation potential. Overall, a better assessment of biodiversity associated with trees and the subsequent provision of ecosystem services constitute a first step toward developing future new microbe-driven sustainable solutions, especially in terms of support for urban green planning and management policy.
- Klíčová slova
- air pollution mitigation, ecosystem services, hydrocarbon biodegradation, phyllosphere, tree cavity organic soil, tree-related microhabitats, urban trees,
- Publikační typ
- časopisecké články MeSH
The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.
- Klíčová slova
- Ferdinandcohnia quinoae, Adaptation, Comparative genomics, Microbial ecology, Quinoa, Speciation,
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- mastné kyseliny * MeSH
- RNA ribozomální 16S genetika MeSH
- rostliny * genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- mastné kyseliny * MeSH
- RNA ribozomální 16S MeSH
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Plasmids are the main mobile elements responsible for horizontal gene transfer (HGT) in microorganisms. These replicons extend the metabolic spectrum of their host cells by carrying functional genes. However, it is still unknown to what extent plasmids carry biosynthetic gene clusters (BGCs) related to the production of secondary or specialized metabolites (SMs). Here, we analyzed 9,183 microbial plasmids to unveil their potential to produce SMs, finding a large diversity of cryptic BGCs in a few varieties of prokaryotic host taxa. Some of these plasmids harbored 15 or more BGCs, and many others were exclusively dedicated to mobilizing BGCs. We found an occurrence pattern of BGCs within groups of homologous plasmids shared by a common taxon, mainly in host-associated microbes (e.g., Rhizobiales, Enterobacteriaceae members). Our results add to the knowledge of the ecological functions and potential industrial uses of plasmids and shed light on the dynamics and evolution of SMs in prokaryotes. IMPORTANCE Plasmids are mobile DNA elements that can be shared among microbial cells, and they are useful for bringing to fruition some microbial ecological traits. However, it is not known to what extent plasmids harbor genes related to the production of specialized/secondary metabolites (SMs). In microbes, these metabolites are frequently useful for defense purposes, signaling, etc. In addition, these molecules usually have biotechnological and clinical applications. Here, we analyzed the content, dynamics, and evolution of genes related to the production of SMs in >9,000 microbial plasmids. Our results confirm that some plasmids act as a reservoir of SMs. We also found that some families of biosynthetic gene clusters are exclusively present in some groups of plasmids shared among closely related microbes. Host-associated bacteria (e.g., plant and human microbes) harbor the majority of specialized metabolites encoded in plasmids. These results provide new knowledge about microbial ecological traits and might enable the discovery of novel metabolites.
- Klíčová slova
- megaplasmids, microbial ecology, plasmids, secondary metabolism,
- MeSH
- Bacteria * genetika MeSH
- lidé MeSH
- multigenová rodina * MeSH
- plazmidy genetika MeSH
- sekundární metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Plant-associated microbial communities play important roles in host nutrition, development and defence. In particular, the microbes living within internal plant tissues can affect plant metabolism in a more intimate way. Understanding the factors that shape plant microbial composition and discovering enriched microbes within endophytic compartments would thus be valuable to gain knowledge on potential plant-microbial coevolutions. However, these interactions are usually studied through reductionist approaches (in vitro models or crop controlled systems). Here, we investigate these ecological factors in wild forest niches using proximally located plants from two distant taxa (blueberry and blackberry) as a model. RESULTS: Although the microbial communities were quite similar in both plants, we found that sampling site had a high influence on them; specifically, its impact on the rhizosphere communities was higher than that on the roots. Plant species and sample type (root vs. rhizosphere) affected the bacterial communities more than the fungal communities. For instance, Xanthobacteraceae and Helotiales taxa were more enriched in roots, while the abundance of Gemmatimonadetes was higher in rhizospheres. Acidobacteria abundance within the endosphere of blueberry was similar to that in soil. Several taxa were significantly associated with either blackberry or blueberry samples regardless of the sampling site. For instance, we found a significant endospheric enrichment of Nevskia in blueberry and of Sphingobium, Novosphingobium and Steroidobacter in blackberry. CONCLUSIONS: There are selective enrichment and exclusion processes in the roots of plants that shapes a differential composition between plant species and sample types (root endosphere-rhizosphere). The special enrichment of some microbial taxa in each plant species might suggest the presence of ancient selection and/or speciation processes and might imply specific symbiosis. The selection of fungi by the host is more pronounced when considering the fungal trait rather than the taxonomy. This work helps to understand plant-microbial interactions in natural ecosystems and the microbiome features of plants.
- Klíčová slova
- Blackberry, Blueberry, Host-microbe interactions, Plant microbiome, Rhizosphere, Soil communities,
- Publikační typ
- časopisecké články MeSH
The European spruce bark beetle, Ips typographus, is a serious pest of spruce forests in Europe, and its invasion and development inside spruce tissues are facilitated by microorganisms. We investigated the core gut bacterial and fungal microbiomes of I. typographus throughout its life cycle in spring and summer generations. We used cultivation techniques and molecular identification in combination with DNA and RNA metabarcoding. Our results revealed that communities differ throughout their life cycle and across generations in proportion of dominantly associated microbes, rather than changes in species composition. The bacteriome consisted mostly of the phylum Gammaproteobacteria, with the most common orders and genera being Enterobacteriales (Erwinia and Serratia), Pseudomonadales (Pseudomonas), and Xanthomonadales. The fungal microbiome was dominated by yeasts (Saccharomycetes-Wickerhamomyces, Kuraishia, and Nakazawaea), followed by Sordariomycetes (Ophiostoma bicolor and Endoconidiophora polonica). We did not observe any structure ensuring long-term persistence of microbiota on any part of the gut epithelium, suggesting that microbial cells are more likely to pass through the beetle's gut with chyme. The most abundant taxa in the beetle's gut were also identified as dominant in intact spruce phloem. Therefore, we propose that these taxa are acquired from the environment rather than specifically vectored between generations.
- Klíčová slova
- Ips typographus, DNA and RNA metabarcoding, bark beetles, core microbiome, gut fungal and bacterial community, seasonality,
- MeSH
- brouci * mikrobiologie MeSH
- kůra rostlin MeSH
- nosatcovití * mikrobiologie MeSH
- roční období MeSH
- smrk * mikrobiologie MeSH
- stadia vývoje MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Ips typographus (European spruce bark beetle) is the most destructive pest of spruce forests in Europe. As for other animals, it has been proposed that the microbiome plays important roles in the biology of bark beetles. About the bacteriome, there still are many uncertainties regarding the taxonomical composition, insect-bacteriome interactions, and their potential roles in the beetle ecology. Here, we aim to deep into the ecological functions and taxonomical composition of I. typographus associated bacteria. RESULTS: We assessed the metabolic potential of a collection of isolates obtained from different life stages of I. typographus beetles. All strains showed the capacity to hydrolyse one or more complex polysaccharides into simpler molecules, which may provide an additional carbon source to its host. Also, 83.9% of the strains isolated showed antagonistic effect against one or more entomopathogenic fungi, which could assist the beetle in its fight against this pathogenic threat. Using culture-dependent and -independent techniques, we present a taxonomical analysis of the bacteriome associated with the I. typographus beetle during its different life stages. We have observed an evolution of its bacteriome, which is diverse at the larval phase, substantially diminished in pupae, greater in the teneral adult phase, and similar to that of the larval stage in mature adults. Our results suggest that taxa belonging to the Erwiniaceae family, and the Pseudoxanthomonas and Pseudomonas genera, as well as an undescribed genus within the Enterobactereaceae family, are part of the core microbiome and may perform vital roles in maintaining beetle fitness. CONCLUSION: Our results indicate that isolates within the bacteriome of I. typographus beetle have the metabolic potential to increase beetle fitness by proving additional and assimilable carbon sources for the beetle, and by antagonizing fungi entomopathogens. Furthermore, we observed that isolates from adult beetles are more likely to have these capacities but those obtained from larvae showed strongest antifungal activity. Our taxonomical analysis showed that Erwinia typographi, Pseudomonas bohemica, and Pseudomonas typographi species along with Pseudoxanthomonas genus, and putative new taxa belonging to the Erwiniaceae and Enterobacterales group are repeatedly present within the bacteriome of I. typographus beetles, indicating that these species might be part of the core microbiome. In addition to Pseudomonas and Erwinia group, Staphylococcus, Acinetobacter, Curtobacterium, Streptomyces, and Bacillus genera seem to also have interesting metabolic capacities but are present in a lower frequency. Future studies involving bacterial-insect interactions or analysing other potential roles would provide more insights into the bacteriome capacity to be beneficial to the beetle.
- Klíčová slova
- Host-microbe interactions, Insect microbiome, Lignocellulolytic enzymes, Microbial ecology, Symbionts,
- Publikační typ
- časopisecké články MeSH