One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.
- Klíčová slova
- Diclofenac, Gene expression, Histology, Ibuprofen, Microbiome, Toxicity,
- MeSH
- antiflogistika nesteroidní metabolismus MeSH
- biologické markery metabolismus MeSH
- chemické látky znečišťující vodu * metabolismus MeSH
- diklofenak metabolismus MeSH
- dysbióza MeSH
- ekosystém MeSH
- epidemický výskyt choroby MeSH
- ibuprofen metabolismus toxicita MeSH
- kyslík metabolismus MeSH
- léčivé přípravky metabolismus MeSH
- messenger RNA metabolismus MeSH
- Oncorhynchus mykiss * metabolismus MeSH
- oxidační stres MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- střevní mikroflóra * MeSH
- voda metabolismus MeSH
- zánět chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- biologické markery MeSH
- chemické látky znečišťující vodu * MeSH
- diklofenak MeSH
- ibuprofen MeSH
- kyslík MeSH
- léčivé přípravky MeSH
- messenger RNA MeSH
- proteiny tepelného šoku HSP70 MeSH
- reaktivní formy kyslíku MeSH
- voda MeSH
Conversion to mucoid form is a crucial step in the pathogenesis of P. aeruginosa in burns and cystic fibrosis (CF) patients. Alginate is considered the major component of biofilm and is highly associated with the formation of mucoid biofilm in this species. Nonsteroid anti-inflammatory drugs (NSAIDs), including ibuprofen, have shown promising antibacterial and antibiofilm potential for bacterial pathogens. In this study, we aimed to evaluate the effect of ibuprofen on the expression of alginate synthetase (alg8), GDP-mannose dehydrogenase (algD), and alginate lyase (algL) genes in multiple drug-resistant (MDR) P. aeruginosa strains. The biofilm formation potential and the expression of alg8, algD, and algL among the bacteria treated with ibuprofen (at sub-inhibitory concentration) were investigated using the crystal violet staining and real-time PCR assays, respectively. The minimum inhibitory concentration of ibuprofen for the studied strains was determined 1024-2048 µg/mL. We observed that ibuprofen was able to reduce bacterial biofilm by 51-77%. Also, the expression of alg8, algD, and algL decreased by 32, 52, and 48%, respectively. The reduction of the genes responsible for alginate synthesis indicates promising antivirulece potential of ibuprofen to combat P. aeruginosa infection, especially in burns and CF patients. Our findings suggest that ibuprofen could be used to reduce the pathogenicity of P. aeruginosa that could be used in combination with antibiotics to treat drug-resistant infections.
- Klíčová slova
- Alginate, Antibiofilm, Cystic fibrosis, Ibuprofen, Infection, P. aeruginosa,
- MeSH
- algináty MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- biofilmy MeSH
- cystická fibróza * mikrobiologie MeSH
- ibuprofen metabolismus farmakologie MeSH
- lidé MeSH
- pseudomonádové infekce * farmakoterapie mikrobiologie MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty MeSH
- antibakteriální látky MeSH
- ibuprofen MeSH
The uptake and metabolism of ibuprofen (IBU) by plants at the cellular level was investigated using a suspension culture of A. thaliana. Almost all IBU added to the medium (200 μM) was metabolized or bound to insoluble structures in 5 days. More than 300 metabolites were determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis, and most of these are first reported for plants here. Although hydroxylated derivatives formed by oxidation on the isobutyl side chain were the main first-step products of IBU degradation, conjugates of these products with sugar, methyl and amino acid groups were the dominant metabolites in the culture. The main portion of total added IBU (81%) was accumulated in the extractable intracellular pool, whereas the cultivation medium fraction contained only 19%. The amount of the insoluble cell-wall-bound IBU was negligible (0.005% of total IBU).
- Klíčová slova
- Arabidopsis thaliana, Ibuprofen, Metabolism, Plant cells, Sequestration,
- MeSH
- antiflogistika nesteroidní metabolismus MeSH
- Arabidopsis metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hydroxylace MeSH
- ibuprofen analýza metabolismus MeSH
- rostliny metabolismus MeSH
- suspenze MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- ibuprofen MeSH
- suspenze MeSH
Formosan subterranean termites (FST) were exposed to strains of Beauveria pseudobassiana (Bpb) and Isaria fumosorosea (Ifr) to determine virulence of the fungi. Once lethality was determined, sublethal doses of Bpb were combined with enzymes capable of degrading the insect cuticle to measure the potential to enhance fungal infection. Bpb applied to FST in combination with proteinases and a chitinase caused increased mortality over the fungus alone. Mortality was enhanced when Ifr was applied to FST in combination with a chitinase isolated from Serratia marcesans. A lipase isolated from Pseudomonas cepacia, when combined with Ifr, also resulted in greater mortality than all control treatments. FST were also exposed to the eicosanoid biosynthesis inhibitors (EBIs) dexamethasone (DEX), ibuprofen (IBU), and ibuprofen sodium salt (IBUNA), in combination with Ifr. Combining Ifr with IBUNA caused significantly increased mortality on days 6, 7, and 9. Cuticle-degrading enzymes and EBIs may have potential to enhance the pathogenic effect of a fungal control agent against the Formosan subterranean termite.
- MeSH
- analýza přežití MeSH
- chitinasy metabolismus MeSH
- dexamethason metabolismus MeSH
- dezinsekce metody MeSH
- Hypocreales růst a vývoj metabolismus MeSH
- ibuprofen metabolismus MeSH
- ikosanoidy antagonisté a inhibitory MeSH
- insekticidy metabolismus MeSH
- Isoptera metabolismus mikrobiologie fyziologie MeSH
- lipasa metabolismus MeSH
- proteasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitinasy MeSH
- dexamethason MeSH
- ibuprofen MeSH
- ikosanoidy MeSH
- insekticidy MeSH
- lipasa MeSH
- proteasy MeSH
The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA).
- Klíčová slova
- BR, BSA, Bilirubin, Binding site, CD, GS, HSA, High affinity, Ibf, Ligand-completion, Low affinity, PSB, RSA, RbSA, SA, SSA, Stereoselectivity, bilirubin, bovine serum albumin, circular dichroism, dCD, difference circular dichroism, gossypol, human serum albumin, ibuprofen, phosphate saline buffer, rabbit serum albumin, rat serum albumin, serum albumin, sheep serum albumin,
- MeSH
- aminokyselinové motivy MeSH
- bilirubin chemie metabolismus MeSH
- cirkulární dichroismus MeSH
- hemin chemie metabolismus MeSH
- ibuprofen chemie metabolismus MeSH
- králíci MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- ligandy * MeSH
- molekulární konformace MeSH
- ovce MeSH
- sérový albumin chemie metabolismus MeSH
- simulace molekulového dockingu MeSH
- skot MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- hemin MeSH
- ibuprofen MeSH
- ligandy * MeSH
- sérový albumin MeSH
The penetration properties of drug-like molecules on human cell membranes are crucial for understanding the metabolism of xenobiotics and overall drug distribution in the human body. Here, we analyze partitioning of substrates of cytochrome P450s (caffeine, chlorzoxazone, coumarin, ibuprofen, and debrisoquine) and their metabolites (paraxanthine, 6-hydroxychlorzoxazone, 7-hydroxycoumarin, 3-hydroxyibuprofen, and 4-hydroxydebrisoquine) on two model membranes: dioleoylphosphatidylcholine (DOPC) and palmitoyloleoylphophatidylglycerol (POPG). We calculated the free energy profiles of these molecules and the distribution coefficients on the model membranes. The drugs were usually located deeper in the membrane than the corresponding metabolites and also had a higher affinity to the membranes. Moreover, the behavior of the molecules on the membranes differed, as they seemed to have a higher affinity to the DOPC membrane than to POPG, implying they have different modes of action in human (mostly PC) and bacterial (mostly PG) cells. As the xenobiotics need to pass through lipid membranes on their way through the body and the effect of some drugs might depend on their accumulation on membranes, we believe that detailed information of penetration phenomenon is important for understanding the overall metabolism of xenobiotics.
- MeSH
- buněčná membrána chemie metabolismus MeSH
- chlorzoxazon chemie metabolismus MeSH
- debrisochin chemie metabolismus MeSH
- fosfatidylcholiny chemie MeSH
- fosfatidylglyceroly chemie MeSH
- ibuprofen chemie metabolismus MeSH
- kofein chemie metabolismus MeSH
- kumariny chemie metabolismus MeSH
- léčivé přípravky chemie metabolismus MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie MeSH
- simulace molekulární dynamiky MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- termodynamika MeSH
- xenobiotika chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol MeSH Prohlížeč
- 1,2-oleoylphosphatidylcholine MeSH Prohlížeč
- chlorzoxazon MeSH
- coumarin MeSH Prohlížeč
- debrisochin MeSH
- fosfatidylcholiny MeSH
- fosfatidylglyceroly MeSH
- ibuprofen MeSH
- kofein MeSH
- kumariny MeSH
- léčivé přípravky MeSH
- lipidové dvojvrstvy MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika MeSH
Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.
- MeSH
- aromatické hydroxylasy chemie metabolismus MeSH
- cytochrom P450 CYP2C9 MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- ibuprofen chemie metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- membrány umělé * MeSH
- molekulární modely MeSH
- povrchové vlastnosti MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-oleoylphosphatidylcholine MeSH Prohlížeč
- aromatické hydroxylasy MeSH
- CYP2C9 protein, human MeSH Prohlížeč
- cytochrom P450 CYP2C9 MeSH
- fosfatidylcholiny MeSH
- ibuprofen MeSH
- membrány umělé * MeSH
- MeSH
- dospělí MeSH
- ibuprofen metabolismus MeSH
- kinetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- Názvy látek
- ibuprofen MeSH