KEY POINTS: Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT: Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
- Klíčová slova
- exercise, human skeletal muscle cells, idiopathic inflammatory myopathy, lipid metabolism, mitochondria,
- MeSH
- kosterní svalová vlákna metabolismus MeSH
- kosterní svaly metabolismus MeSH
- kvalita života MeSH
- lidé MeSH
- metabolismus lipidů * MeSH
- myozitida * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.
- MeSH
- glutathion metabolismus MeSH
- hormony štítné žlázy krev MeSH
- hypertyreóza metabolismus MeSH
- hypotyreóza metabolismus MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- játra účinky léků metabolismus MeSH
- krevní glukóza metabolismus MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků metabolismus MeSH
- lipidy krev MeSH
- palmový olej farmakologie MeSH
- potkani Wistar MeSH
- potravní doplňky * MeSH
- štítná žláza metabolismus MeSH
- tělesná hmotnost účinky léků MeSH
- velikost orgánu účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutathion MeSH
- hormony štítné žlázy MeSH
- krevní glukóza MeSH
- lipidy MeSH
- palmový olej MeSH
Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.
- MeSH
- buněčná membrána chemie metabolismus MeSH
- erytrocyty metabolismus MeSH
- erytropoéza fyziologie MeSH
- iontový transport fyziologie MeSH
- krysa rodu Rattus MeSH
- membránové lipidy chemie metabolismus MeSH
- počet erytrocytů metody MeSH
- potkani Wistar MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové lipidy MeSH
- sodíko-draslíková ATPasa MeSH
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase-mediated superoxide (O(2)(-)) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren-2 renin gene (Ren-2 TGR) and their age-matched normotensive controls - Hannover Sprague Dawley rats (HanSD). We found no difference in the activity of NADPH oxidase measured as a lucigenin-mediated O(2)(-) production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren-2 TGR compared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren-2 TGR+LOS) did not change NADPH oxidase-dependent O(2)(-) production in the kidney. We detected significantly elevated indirect markers of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) in Ren-2 TGR, while they were significantly decreased in Ren-2 TGR+LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions.
- MeSH
- blokátory receptorů AT1 pro angiotensin II farmakologie terapeutické užití MeSH
- hypertenze farmakoterapie enzymologie MeSH
- ledviny účinky léků enzymologie MeSH
- losartan farmakologie terapeutické užití MeSH
- mozek účinky léků enzymologie MeSH
- NADPH-oxidasy metabolismus MeSH
- náhodné rozdělení MeSH
- peroxidace lipidů účinky léků MeSH
- potkani transgenní MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- blokátory receptorů AT1 pro angiotensin II MeSH
- losartan MeSH
- NADPH-oxidasy MeSH
- superoxidy MeSH
Enhanced production of superoxide radicals by nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase in the brain and/or kidney of salt hypertensive Dahl rats has been proposed to participate in the pathogenesis of this form of experimental hypertension. Most information was obtained in young Dahl salt-sensitive (DS) rats subjected to high salt intake prior to sexual maturation. Therefore, the aim of our study was to investigate whether salt hypertension induced in adult DS rats is also accompanied with a more pronounced oxidative stress in the brain or kidney as compared to Dahl salt-resistant (DR) controls. NADPH oxidase activity as well as the content of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (oxidative index), which indicate a degree of lipid peroxidation, were evaluated in two brain regions (containing either hypothalamic paraventricular nucleus or rostral ventrolateral medulla) as well as in renal medulla and cortex. High salt intake induced hypertension in DS rats but did not modify blood pressure in DR rats. DS and DR rats did not differ in NADPH oxidase-dependent production of ROS, TBARS content or oxidative index in either part of the brain. In addition, high-salt diet did not change significantly any of these brain parameters. In contrast, the enhanced NADPH oxidase-mediated ROS production (without significant signs of increased lipid peroxidation) was detected in the renal medulla of salt hypertensive DS rats. Our findings suggest that there are no signs of enhanced oxidative stress in the brain of adult Dahl rats with salt hypertension induced in adulthood.
- MeSH
- hypertenze chemicky indukované metabolismus MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl * MeSH
- ledviny účinky léků metabolismus MeSH
- mozek metabolismus MeSH
- orgánová specificita účinky léků MeSH
- oxidační stres účinky léků MeSH
- potkani inbrední Dahl MeSH
- reaktivní formy kyslíku metabolismus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kuchyňská sůl * MeSH
- reaktivní formy kyslíku MeSH
AIM: It is well-known that salt hypertension is associated with increased oxidative stress. Since the development of salt hypertension is age-dependent, we were interested whether young and adult salt hypertensive Dahl rats differ in oxidative stress level and/or in the effects of chronic antioxidant therapy on blood pressure (BP) level and on the participation of particular vasoconstrictor/vasodilator systems in BP maintenance. METHODS: Young (5-week-old) and adult (12-week-old) salt-sensitive (Dahl-S) male rats were fed high-salt diet (5% NaCl) and drank tempol solution (2 mm) for 5 weeks. BP was monitored with radiotelemetry and vasoconstrictor/vasodilator balance was evaluated at the end of experiment. Moreover, NO synthase activity, superoxide production and lipoperoxidation were determined in heart, kidney and aorta in separate subgroups of Dahl rats. RESULTS: Tempol treatment had quite opposite BP effects in young and adult Dahl-S rats. While it tended to increase BP in young salt hypertensive Dahl-S rats, it significantly lowered BP in the adult ones due to reduced sympathetic vasoconstriction. Importantly, high salt intake substantially reduced NO synthase activity in heart and kidney, and markedly increased superoxide production in kidneys and aorta of adult Dahl-S rats in which BP correlated positively with superoxide production in thoracic aorta and lipoperoxidation in kidneys. CONCLUSION: Chronic antioxidant therapy lowered BP only in adult salt hypertensive Dahl-S rats in which superoxide levels were increased in both kidneys and aorta. Blood pressure reduction induced by chronic tempol treatment is related to attenuated sympathetic vasoconstriction rather than to augmented NO-dependent vasodilatation.
- Klíčová slova
- Dahl rats, age, reactive oxygen species, salt hypertension, tempol,
- MeSH
- antioxidancia aplikace a dávkování farmakologie MeSH
- chlorid sodný škodlivé účinky MeSH
- cyklické N-oxidy aplikace a dávkování farmakologie MeSH
- hypertenze farmakoterapie MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- oxidační stres účinky léků MeSH
- potkani inbrední Dahl MeSH
- spinové značení MeSH
- stárnutí MeSH
- sympatický nervový systém MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- chlorid sodný MeSH
- cyklické N-oxidy MeSH
- spinové značení MeSH
- tempol MeSH Prohlížeč
Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status.
- MeSH
- cholesterol metabolismus MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- hormony štítné žlázy metabolismus MeSH
- hypertyreóza enzymologie metabolismus MeSH
- hypotyreóza enzymologie metabolismus MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolismus lipidů * MeSH
- mitochondrie enzymologie metabolismus MeSH
- omega-3 mastné kyseliny aplikace a dávkování metabolismus MeSH
- potkani inbrední LEW MeSH
- potravní doplňky analýza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- glycerolfosfátdehydrogenasa MeSH
- hormony štítné žlázy MeSH
- omega-3 mastné kyseliny MeSH
Reactive oxygen species (ROS) are common products of the physiological metabolic reactions, which are associated with cell signaling and with the pathogenesis of various nervous disorders. The brain tissue has the high rate of oxidative metabolic activity, high concentration of polyunsaturated fatty acids in membrane lipids, presence of iron ions and low capacity of antioxidant enzymes, which makes the brain very susceptible to ROS action and lipid peroxidation formation. Membranes of brain cortex show a higher production of thiobarbituric acid-reactive substances (TBARS) in prooxidant system (ADP.Fe(3+)/NADPH) than membranes from the heart or kidney. Lipid peroxidation influences numerous cellular functions through membrane-bound receptors or enzymes. The rate of brain cortex Na(+),K(+)-ATPase inhibition correlates well with the increase of TBARS or conjugated dienes and with changes of membrane fluidity. The experimental model of short-term hypoxia (simulating an altitude of 9000 m for 30 min) shows remarkable increase in TBARS in four different parts of the rat brain (cortex, subcortical structures, cerebellum and medulla oblongata) during the postnatal development of Wistar rat of both sexes. Young rats and males are more sensitive to oxygen changes than adult rats and females, respectively. Under normoxia or hypobaric hypoxia both ontogenetic aspects and sex differences play a major role in establishing the activity of erythrocyte catalase, which is an important part of the antioxidant defense of the organism. Rats pretreated with L-carnitine (and its derivatives) have lower TBARS levels after the exposure to hypobaric hypoxia. The protective effect of L-carnitine is comparable with the effect of tocopherol, well-known reactive species scavenger. Moreover, the plasma lactate increases after a short-term hypobaric hypoxia and decreases in L-carnitine pretreated rats. Acute hypobaric hypoxia and/or L-carnitine-pretreatment modify serum but not brain lactate dehydrogenase activity. The obtained data seem to be important because the variations in oxygen tension represent specific signals of regulating the activity of many specific systems in the organism.
- MeSH
- hypoxie metabolismus MeSH
- karnitin metabolismus MeSH
- krysa rodu Rattus MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- peroxidace lipidů fyziologie MeSH
- pohlavní dimorfismus MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- karnitin MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- reaktivní formy kyslíku MeSH
Digitonin solubilizes mitochondrial membrane, breaks the integrity of the respiratory chain and releases two mobile redox-active components: coenzyme Q (CoQ) and cytochrome c (cyt c). In the present study we report the inhibition of glycerol-3-phosphate- and succinate-dependent oxygen consumption rates by digitonin treatment. Our results show that the inhibition of oxygen consumption rates is recovered by the addition of exogenous synthetic analog of CoQ idebenone (hydroxydecyl-ubiquinone; IDB) and cyt c. Glycerol-3-phosphate oxidation rate is recovered to 148 % of control values, whereas succinate-dependent oxidation rate only to 68 %. We find a similar effect on the activities of glycerol-3-phosphate and succinate cytochrome c oxidoreductase. Our results also indicate that succinate-dependent oxidation is less sensitive to digitonin treatment and less activated by IDB in comparison with glycerol-3-phosphate-dependent oxidation. These findings might indicate the different mechanism of the electron transfer from two flavoprotein-dependent dehydrogenases (glycerol-3-phosphate dehydrogenase and succinate dehydrogenase) localized on the outer and inner face of the inner mitochondrial membrane, respectively.
- MeSH
- cytochromy c metabolismus MeSH
- digitonin farmakologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- glycerolfosfáty metabolismus MeSH
- hypertyreóza metabolismus MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- kinetika MeSH
- krysa rodu Rattus MeSH
- kyselina jantarová metabolismus MeSH
- mitochondriální membrány účinky léků metabolismus MeSH
- modely nemocí na zvířatech MeSH
- obnova funkce MeSH
- oxidace-redukce MeSH
- potkani Wistar MeSH
- spotřeba kyslíku účinky léků MeSH
- sukcinát: cytochrom c oxidoreduktasa metabolismus MeSH
- ubichinon analogy a deriváty farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochromy c MeSH
- digitonin MeSH
- glycerolfosfátdehydrogenasa MeSH
- glycerolfosfáty MeSH
- idebenone MeSH Prohlížeč
- kyselina jantarová MeSH
- sukcinát: cytochrom c oxidoreduktasa MeSH
- ubichinon MeSH
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
- MeSH
- arteriální tlak fyziologie MeSH
- draslík metabolismus MeSH
- hypertenze etiologie metabolismus prevence a kontrola MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl škodlivé účinky MeSH
- potkani inbrední Dahl MeSH
- renin-angiotensin systém fyziologie MeSH
- vápník metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- draslík MeSH
- kuchyňská sůl MeSH
- vápník MeSH