Cysts and trophozoites of vestibuliferid ciliates and larvae of Strongyloides were found in fecal samples from captive orangutans Pongo pygmaeus and P. abelii from Czech and Slovak zoological gardens. As comparative material, ciliates from semi-captive mandrills Mandrillus sphinx from Gabon were included in the study. Phylogenetic analysis of the detected vestibuliferid ciliates using ITS1-5.8s-rRNA-ITS2 and partial 18S ribosomal deoxyribonucleic acid (rDNA) revealed that the ciliates from orangutans are conspecific with Balantioides coli lineage A, while the ciliates from mandrills clustered with Buxtonella-like ciliates from other primates. Morphological examination of the cysts and trophozoites using light microscopy did not reveal differences robust enough to identify the genera of the ciliates. Phylogenetic analysis of detected L1 larvae of Strongyloides using partial cox1 revealed Strongyloides stercoralis clustering within the cox1 lineage A infecting dogs, humans, and other primates. The sequences of 18S rDNA support these results. As both B. coli and S. stercoralis are zoonotic parasites and the conditions in captive and semi-captive settings may facilitate transmission to humans, prophylactic measures should reflect the findings.
- Klíčová slova
- Balantioides coli, Buxtonella-like, Mandrillus sphinx, Pongo abelii, Pongo pygmaeus, Strongyloides stercoralis, molecular phylogeny, semi-captive animals, zoo animals,
- MeSH
- fylogeneze MeSH
- lidé MeSH
- Mandrillus * MeSH
- paraziti * genetika MeSH
- Pongo pygmaeus MeSH
- Pongo genetika MeSH
- primáti genetika MeSH
- psi MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Strongyloidiasis represents a major medical and veterinary helminthic disease. Human infection is caused by Strongyloides stercoralis, Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi, with S.stercoralis accounting for the majority of cases. Strongyloides f. fuelleborni likely represents a zoonosis acquired from non-human primates (NHPs), while no animal reservoir for S. f. kellyi infection has been found. Whether S. stercoralis represents a zoonosis acquired from dogs and cats remains unanswered. Over the past two decades various tools have been applied to genotype Strongyloides spp. The most commonly sequenced markers have been the hyper-variable regions I and IV of the 18S rRNA gene and selected portions of the cytochrome c oxidase subunit I gene. These markers have been sequenced and compared in Strongyloides from multiple hosts and geographical regions. More recently, a machine learning algorithm multi-locus sequence typing approach has been applied using these markers, while others have applied whole genome sequencing. Genotyping of Strongyloides from dogs, cats, NHPs and humans has identified that S. stercoralis likely originated in dogs and adapted to human hosts. It has also been demonstrated that S. stercoralis is distinct from S. f. fuelleborni and S. f. kellyi. Two distinct genetic clades of S. stercoralis exist, one restricted to dogs and another infecting humans, NHPs, dogs and cats. Genotyping of S. f. fuelleborni has identified two separate clades, one associated with African isolates and another Indochinese peninsular clade. This review summarises the history and development of genotyping tools for Strongyloides spp. It describes the findings of major studies to date in the context of the epidemiology and evolutionary biology of these helminths, with a specific focus on human-infecting species.
- Klíčová slova
- Epidemiology, Genome, Genotyping, Strongyloides, Strongyloides fuelleborni, Strongyloides stercoralis, Strongyloidiasis,
- MeSH
- feces parazitologie MeSH
- fylogeneze MeSH
- genotyp MeSH
- kočky MeSH
- multilokusová sekvenční typizace MeSH
- nemoci koček * MeSH
- nemoci psů * epidemiologie parazitologie MeSH
- populační genetika MeSH
- primáti genetika MeSH
- psi MeSH
- Strongyloides stercoralis * genetika MeSH
- strongyloidiáza * epidemiologie parazitologie veterinární MeSH
- veřejné zdravotnictví MeSH
- zoonózy parazitologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The close phylogenetic relationship between humans and nonhuman primates (NHPs) can result in a high potential for pathogen exchange. In recent decades, NHP and human interactions have become more frequent due to increasing habitat encroachment and ecotourism. Strongylid communities, which include members of several genera, are typically found in NHPs. Using optimized high-throughput sequencing for strain-level identification of primate strongylids, we studied the structure of strongylid communities in NHPs and humans co-habiting a tropical forest ecosystem in the Central African Republic. General taxonomic assignment of 85 ITS-2 haplotypes indicated that the studied primates harbour at least nine genera of strongylid nematodes, with Oesophagostomum and Necator being the most prevalent. We detected both host-specific and shared strongylid haplotypes. Skin-penetrating Necator gorillaehaplotypes were shared between humans and gorillas but Necator americanus were much more restricted to humans. Strongylid communities of local hunter-gatherers employed as trackers were more similar to those of gorillas compared to their relatives, who spent more time in villages. This was due to lower abundance of human-origin N. americanus in both gorillas and trackers. Habituated gorillas or those under habituation did not show larger overlap of strongylids with humans compared to unhabituated. We concluded that the occurrence of the human-specific strongylids in gorillas does not increase with direct contact between gorillas and humans due to the habituation. Overall, our results indicate that the degree of habitat sharing between hosts, together with mode of parasite transmission, are important factors for parasite spillover among primates.
- Klíčová slova
- metabarcoding, primate, strongylid nematode, sympatric,
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- Gorilla gorilla genetika MeSH
- lidé MeSH
- Necator genetika MeSH
- Oesophagostomum genetika MeSH
- primáti genetika MeSH
- sympatrie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- časoprostorová analýza MeSH
- druhová specificita MeSH
- editace RNA genetika MeSH
- genotyp MeSH
- HEK293 buňky MeSH
- jaderné proteiny metabolismus MeSH
- lidé MeSH
- myši MeSH
- orgánová specificita genetika MeSH
- primáti genetika MeSH
- proteiny vázající RNA * genetika metabolismus MeSH
- proteolýza MeSH
- svaly metabolismus MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ADAR protein, human MeSH Prohlížeč
- ADAR1 protein, mouse MeSH Prohlížeč
- ADAR2 protein, mouse MeSH Prohlížeč
- ADARB1 protein, human MeSH Prohlížeč
- adenosindeaminasa * MeSH
- AIMP2 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- proteiny vázající RNA * MeSH