Most cited article - PubMed ID 10360182
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
- Keywords
- drug discovery, host immunity, immunomodulation, salivary glands, tick saliva,
- MeSH
- Autoimmune Diseases immunology therapy MeSH
- Immunomodulation immunology MeSH
- Ticks immunology MeSH
- Humans MeSH
- Immune System Diseases immunology therapy MeSH
- Arthropod Proteins immunology MeSH
- Saliva immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Arthropod Proteins MeSH
BACKGROUND: The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. RESULTS: We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. CONCLUSION: This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.
- Keywords
- Hyalomma dromedarii, LC–MS/MS, PIT, Proteome, Salivary glands,
- MeSH
- Ticks genetics metabolism MeSH
- Arthropod Proteins genetics metabolism MeSH
- Proteome metabolism MeSH
- Proteomics MeSH
- Salivary Glands metabolism MeSH
- Saliva metabolism MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Camelus MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arthropod Proteins MeSH
- Proteome MeSH
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or "anti-tick" vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
- Keywords
- anti-inflammatory proteins, hemostasis, immunomodulation, salivary proteins, therapeutics, ticks,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. METHODS AND FINDINGS: In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. CONCLUSIONS: In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
- MeSH
- Leishmania immunology MeSH
- Psychodidae parasitology physiology MeSH
- Salivary Proteins and Peptides immunology metabolism MeSH
- Saliva immunology parasitology MeSH
- Feeding Behavior * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Salivary Proteins and Peptides MeSH
Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.
- MeSH
- Analysis of Variance MeSH
- Borrelia burgdorferi Group physiology MeSH
- Phylogeny MeSH
- Disease Vectors MeSH
- Ixodes growth & development metabolism microbiology MeSH
- Ligands MeSH
- Lipocalins chemistry classification metabolism MeSH
- Lyme Disease microbiology MeSH
- Mice MeSH
- Base Sequence MeSH
- Saliva metabolism MeSH
- Life Cycle Stages MeSH
- Protein Structure, Tertiary MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ligands MeSH
- Lipocalins MeSH
The saliva of ixodid ticks contains a mixture of bioactive molecules that target a wide spectrum of host defense mechanisms to allow ticks to feed on the vertebrate host for several days. Tick salivary proteins cluster in multigenic protein families, and individual family members display redundancy and pluripotency in their action to ameliorate or evade host immune responses. It is now clear that members of different protein families can target the same cellular or molecular pathway of the host physiological response to tick feeding. We present and discuss our hypothesis that redundancy and pluripotency evolved in tick salivary immunomodulators to evade immune recognition by the host while retaining the immunomodulatory potential of their saliva.
- Keywords
- immunomodulation, multigenic protein families, pluripotency, redundancy, silent antigens, tick salivary proteins,
- MeSH
- Arachnid Vectors immunology parasitology MeSH
- Immune Evasion immunology MeSH
- Host-Parasite Interactions immunology MeSH
- Ixodidae immunology parasitology MeSH
- Humans MeSH
- Parasitic Diseases immunology transmission MeSH
- Arthropod Proteins immunology MeSH
- Salivary Proteins and Peptides immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Arthropod Proteins MeSH
- Salivary Proteins and Peptides MeSH
UNLABELLED: Next generation sequencing and proteomics have helped to comprehensively characterize gene expression in tick salivary glands at both the transcriptome and the proteome level. Functional data are, however, lacking. Given that tick salivary secretions are critical to the success of the tick transmission lifecycle and, as a consequence, for host colonization by the pathogens they spread, we thoroughly review here the literature on the known interactions between tick saliva (or tick salivary gland extracts) and the innate and adaptive vertebrate immune system. The information is intended to serve as a reference for functional characterization of the numerous genes and proteins expressed in tick salivary glands with an ultimate goal to develop novel vector and pathogen control strategies. SIGNIFICANCE: We overview all the known interactions of tick saliva with the vertebrate immune system. The provided information is important, given the recent developments in high-throughput transcriptomic and proteomic analysis of gene expression in tick salivary glands, since it may serve as a guideline for the functional characterization of the numerous newly-discovered genes expressed in tick salivary glands.
- Keywords
- Adaptive immunity, Innate immunity, Saliva, Salivary glands, Tick,
- MeSH
- Insect Proteins immunology MeSH
- Host-Parasite Interactions immunology MeSH
- Ticks immunology MeSH
- Models, Immunological MeSH
- Immunity, Innate immunology MeSH
- Saliva immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Insect Proteins MeSH
BACKGROUND: Ticks counteract host inflammatory responses by secreting proteins from their saliva that compete for histamine binding. Among these tick salivary proteins are lipocalins, antiparallel beta-barrel proteins that sequester small molecules. A tick salivary lipocalin has been structurally resolved and experimentally shown to efficiently compete for histamine with its native receptor (e.g., H1 histamine receptor). To date, molecular dynamics simulations focus on protein-protein and protein-ligand interactions, but there are currently no studies for simultaneous ligand exploration between two competing proteins. METHODS: Aided by state-of-the-art, high-throughput computational methods, the current study simulated and analyzed the dynamics of competitive histamine binding at the tick-host interface using the available crystal structures of both the tick salivary lipocalin histamine-binding protein from Rhipicephalus appendiculatus and the human histamine receptor 1. RESULTS: The attraction towards the tick salivary lipocalin seems to depend on the protonated (adding a hydrogen ion) state of histamine since the current study shows that as histamine becomes more protonated it increases its exploration for the tick salivary lipocalin. This implies that during tick feeding, histamine may need to be protonated for the tick salivary lipocalin to efficiently sequester it in order to counteract inflammation. Additionally, the beta-hairpin loops (at both ends of the tick salivary lipocalin barrel) were reported to have a functional role in sequestering histamine and the results in the current study concur and provide evidence for this hypothesis. These beta-hairpin loops of the tick salivary lipocalin possess more acidic residues than a structurally similar but functionally unrelated lipocalin from the butterfly, Pieris brassicae; comparative results indicate these acidic residues may be responsible for the ability of the tick lipocalin to out-compete the native (H1) receptor for histamine. CONCLUSIONS: Three explanatory types of data can be obtained from the current study: (i) the dynamics of multiple binding sites, (ii) competition between two proteins for a ligand, and (iii) the intrinsic molecular components involved in the competition. These data can provide further insight at the atomic level of the host-tick interface that cannot be experimentally determined. Additionally, the methods used in this study can be applied in rationally designing drugs.
- MeSH
- Histamine metabolism MeSH
- Host-Pathogen Interactions * MeSH
- Kinetics MeSH
- Humans MeSH
- Lipocalins chemistry metabolism MeSH
- Models, Molecular MeSH
- Receptors, Histamine H1 chemistry metabolism MeSH
- Rhipicephalus physiology MeSH
- Molecular Dynamics Simulation MeSH
- Protein Binding MeSH
- Computational Biology methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histamine MeSH
- Lipocalins MeSH
- Receptors, Histamine H1 MeSH
BACKGROUND: In recent years, there have been several sialome projects revealing transcripts expressed in the salivary glands of ticks, which are important vectors of several human diseases. Here, we focused on the sialome of the European vector of Lyme disease, Ixodes ricinus. RESULTS: In the attempt to describe expressed genes and their dynamics throughout the feeding period, we constructed cDNA libraries from four different feeding stages of Ixodes ricinus females: unfed, 24 hours after attachment, four (partially fed) and seven days (fully engorged) after attachment. Approximately 600 randomly selected clones from each cDNA library were sequenced and analyzed. From a total 2304 sequenced clones, 1881 sequences forming 1274 clusters underwent subsequent functional analysis using customized bioinformatics software. Clusters were sorted according to their predicted function and quantitative comparison among the four libraries was made. We found several groups of over-expressed genes associated with feeding that posses a secretion signal and may be involved in tick attachment, feeding or evading the host immune system. Many transcripts clustered into families of related genes with stage-specific expression. Comparison to Ixodes scapularis and I. pacificus transcripts was made. CONCLUSION: In addition to a large number of homologues of the known transcripts, we obtained several novel predicted protein sequences. Our work contributes to the growing list of proteins associated with tick feeding and sheds more light on the dynamics of the gene expression during tick feeding. Additionally, our results corroborate previous evidence of gene duplication in the evolution of ticks.
- MeSH
- Arachnid Vectors genetics metabolism MeSH
- DNA Primers genetics MeSH
- Expressed Sequence Tags MeSH
- Phylogeny MeSH
- Gene Library MeSH
- Ixodes genetics metabolism MeSH
- DNA, Complementary genetics MeSH
- Molecular Sequence Data MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Salivary Proteins and Peptides chemistry genetics MeSH
- Saliva metabolism MeSH
- Gene Expression Profiling MeSH
- Computational Biology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- DNA Primers MeSH
- DNA, Complementary MeSH
- Salivary Proteins and Peptides MeSH
The impact of Ixodes ricinus salivary gland extract (SGE) on inflammatory changes in the skin and draining lymph nodes of mice, elicited by the infection with the important human pathogen, B. afzelii, was determined using flow cytometry. SGE injected together with spirochetes reduced the numbers of leukocytes and gammadelta-T lymphocytes in infected epidermis at early time-points post infection. In draining lymph nodes, the anti-inflammatory effect of SGE was manifested by the decrease of total cell count compared with that in mice treated with inactivated SGE. Changes in subpopulations of immunocompetent cells apparently reflected the effect of SGE on the proliferation of spirochetes in the host. The significance of tick saliva anti-inflammatory effect for saliva activated transmission of B. afzelii is shown.
- MeSH
- Borrelia burgdorferi Group growth & development MeSH
- Ticks immunology MeSH
- Skin immunology pathology MeSH
- Lyme Disease immunology pathology transmission MeSH
- Lymph Nodes immunology pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Lymphocyte Count MeSH
- Lymphocyte Subsets MeSH
- Salivary Glands immunology MeSH
- Tissue Extracts immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tissue Extracts MeSH