Nejvíce citovaný článek - PubMed ID 11425726
The contamination of food and animal feeds with mycotoxions, particularly aflatoxin B1 (AFB1), poses significant risks to human health and causes economic losses. This study investigated bacteria from various fermented milk products to assess their ability to detoxify AFB1. A variety of household fermented kefir milk, kefir-like beverages, and kefir grains were collected from rural areas and subjected to microbiological analysis. Gram-positive bacterial isolates were further identified based on the 16S rRNA gene homology analysis. Seven bacterial isolates that were initially identified as lactic acid bacteria were selected for their potential to detoxify AFB1. Effects of environmental factors, including temperature, time, pH, and cell concentration, as well as bacterial components such as inoculum, fermentation supernatant, and cells, were evaluated on AFB1 detoxification. The most frequent isolates belonged to the new genus Lentilactobacillus and Lactiplantibacillus, of which three strains were identified as L. kefiri, L. diolivorans, and L. plantarum. The selected L. plantarum isolate demonstrated optimal AFB1 detoxification at pH 4, a 4-h exposure time, and a cell concentration of 1.0 × 1016 CFU/mL. Significant differences were observed in toxin removal between fermentation supernatant and cells, while temperature showed no significant effect on toxin detoxification. This study demonstrated the high ability of L. plantarum for AFB1 detoxification, suggesting potential applications for food and feed safety enhancement. Further research is warranted to optimize its effectiveness and explore broader applications.
- Klíčová slova
- Lactiplantibacillus plantarum, Aflatoxin B1, Detoxification, Fermented milk products, Lactic acid bacteria,
- Publikační typ
- časopisecké články MeSH
T-2 toxin is a worldwide problem for feed and food safety, leading to livestock and human health risks. The objective of this study was to explore the mechanism of T-2 toxin-induced small intestine injury in broilers by integrating the advanced microbiomic, metabolomic and transcriptomic technologies. Four groups of 1-day-old male broilers (n = 4 cages/group, 6 birds/cage) were fed a control diet and control diet supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. Compared with the control, dietary T-2 toxin reduced feed intake, body weight gain, feed conversion ratio, and the apparent metabolic rates and induced histopathological lesions in the small intestine to varying degrees by different doses. Furthermore, the T-2 toxin decreased the activities of glutathione peroxidase, thioredoxin reductase and total antioxidant capacity but increased the concentrations of protein carbonyl and malondialdehyde in the duodenum in a dose-dependent manner. Moreover, the integrated microbiomic, metabolomic and transcriptomic analysis results revealed that the microbes, metabolites, and transcripts were primarily involved in the regulation of nucleotide and glycerophospholipid metabolism, redox homeostasis, inflammation, and apoptosis were related to the T-2 toxin-induced intestinal damage. In summary, the present study systematically elucidated the intestinal toxic mechanisms of T-2 toxin, which provides novel ideas to develop a detoxification strategy for T-2 toxin in animals.
- Klíčová slova
- Chicks, Intestine, Metabolome, Microbiome, T-2 toxin, Transcriptome,
- MeSH
- antioxidancia metabolismus MeSH
- apoptóza MeSH
- dieta MeSH
- homeostáza MeSH
- krmivo pro zvířata analýza MeSH
- kur domácí * metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- potravní doplňky MeSH
- T-2 toxin * toxicita MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- T-2 toxin * MeSH
Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.
- Klíčová slova
- aflatoxin *, biological detoxification *, degradation products *, detoxification mechanism *, probiotics *,
- MeSH
- aflatoxiny chemie metabolismus MeSH
- kontaminace potravin MeSH
- Lactobacillus fyziologie MeSH
- lidé MeSH
- Saccharomyces fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aflatoxiny MeSH