Nejvíce citovaný článek - PubMed ID 12165426
The contamination of food and animal feeds with mycotoxions, particularly aflatoxin B1 (AFB1), poses significant risks to human health and causes economic losses. This study investigated bacteria from various fermented milk products to assess their ability to detoxify AFB1. A variety of household fermented kefir milk, kefir-like beverages, and kefir grains were collected from rural areas and subjected to microbiological analysis. Gram-positive bacterial isolates were further identified based on the 16S rRNA gene homology analysis. Seven bacterial isolates that were initially identified as lactic acid bacteria were selected for their potential to detoxify AFB1. Effects of environmental factors, including temperature, time, pH, and cell concentration, as well as bacterial components such as inoculum, fermentation supernatant, and cells, were evaluated on AFB1 detoxification. The most frequent isolates belonged to the new genus Lentilactobacillus and Lactiplantibacillus, of which three strains were identified as L. kefiri, L. diolivorans, and L. plantarum. The selected L. plantarum isolate demonstrated optimal AFB1 detoxification at pH 4, a 4-h exposure time, and a cell concentration of 1.0 × 1016 CFU/mL. Significant differences were observed in toxin removal between fermentation supernatant and cells, while temperature showed no significant effect on toxin detoxification. This study demonstrated the high ability of L. plantarum for AFB1 detoxification, suggesting potential applications for food and feed safety enhancement. Further research is warranted to optimize its effectiveness and explore broader applications.
- Klíčová slova
- Lactiplantibacillus plantarum, Aflatoxin B1, Detoxification, Fermented milk products, Lactic acid bacteria,
- Publikační typ
- časopisecké články MeSH
Beta (β)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, β-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of β-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and β-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and β-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and β-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of β-glucans. Increased C/N ratio led to increased biomass, lipid and β-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the β-glucan production was positively affected.
- Klíčová slova
- carbon:nitrogen ratio, high-throughput screening, lipids, osmotic stress, red yeast, β-glucans,
- Publikační typ
- časopisecké články MeSH
We report an optimized low-input FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements-sequencing) procedure to assay chromatin accessibility from limited amounts of yeast cells. We demonstrate that the method performs well on as little as 4 mg of cells scraped directly from a few colonies. Sensitivity, specificity and reproducibility of the scaled-down method are comparable with those of regular, higher input amounts, and allow the use of 100-fold fewer cells than existing procedures. The method enables epigenetic analysis of chromatin structure without the need for cell multiplication of exponentially growing cells in liquid culture, thus opening the possibility of studying colony cell subpopulations, or those that can be isolated directly from environmental samples.
- Klíčová slova
- HTS, NGS, Saccharomyces cerevisiae, chromatin-accessibility, epigenetics,
- MeSH
- chromatin chemie genetika metabolismus MeSH
- formaldehyd chemie MeSH
- genom fungální genetika MeSH
- počet buněk MeSH
- regulační oblasti nukleových kyselin MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- formaldehyd MeSH
Cardiolipin and phosphatidylglycerol are anionic phospholipids localized to the inner mitochondrial membrane. In this study, it is demonstrated by fluorescence and transmission electron microscopy that atp2.1pgs1Δ mutant mitochondria lacking anionic phospholipids contain fragmented and swollen mitochondria with a completely disorganized inner membrane. In the second part of this study, it was shown that the temperature sensitivity of the atp2.1pgs1Δ mutant was not suppressed by the osmotic stabilizer glucitol but by glucosamine, a precursor of chitin synthesis. The atp2.1pgs1Δ mutant was hypersensitive to Calcofluor White and caffeine, resistant to Zymolyase, but its sensitivity to caspofungin was the same as the strains with the standard PGS1 gene. The distribution of chitin in the mutant cell wall was impaired. The glucan level in the cell wall of the atp2.1pgs1Δ mutant was reduced by 4-8 %, but the level of chitin was almost double that in the wild-type strain. The cell wall of the atp2.1pgs1Δ mutant was about 20 % thinner than the wild type, but its morphology was not significantly altered.
- MeSH
- aerobióza MeSH
- buněčná stěna chemie ultrastruktura MeSH
- delece genu MeSH
- fluorescenční mikroskopie MeSH
- fosfolipidy nedostatek MeSH
- glukany analýza MeSH
- Kluyveromyces cytologie genetika růst a vývoj metabolismus MeSH
- mitochondrie ultrastruktura MeSH
- teplota MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- glukany MeSH
The osmotolerant and cell wall properties of the two most studied wild-type Zygosaccharomyces rouxii strains (CBS 732 and ATCC 42981) were examined. Differences in their (1) tolerance to high salt content in the medium, (2) resistance to the lysing enzymes Lyticase and Zymolyase, (3) cell-wall polymer content and (4) cell wall micromorphology suggested that the less osmotolerant CBS 732 strain possesses a more rigid cell wall than the more osmotolerant ATCC 42981, whose cell wall seems to be more flexible and elastic.
- MeSH
- antifungální látky farmakologie MeSH
- buněčná stěna fyziologie ultrastruktura MeSH
- endo-1,3-beta-glukanasa farmakologie MeSH
- fyziologická adaptace MeSH
- hypertonický solný roztok metabolismus MeSH
- multienzymové komplexy farmakologie MeSH
- osmolární koncentrace MeSH
- proteasy farmakologie MeSH
- Saccharomyces cerevisiae fyziologie MeSH
- Zygosaccharomyces cytologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- endo-1,3-beta-glukanasa MeSH
- hypertonický solný roztok MeSH
- lyticase MeSH Prohlížeč
- multienzymové komplexy MeSH
- proteasy MeSH
Fungal cell walls possess a characteristic chemical composition differentiating fungal cells from other cell types. For this reason, the mechanisms involved in cell-wall formation represent a potential target for selective antifungal drugs. Understanding the structure and biosynthesis of fungal cell walls opens the ways for design of effective drugs for treating fungal diseases. This article reviews the history methods employed in chemical and structural analysis of fungal cell walls and in studies concerning their formation.