Nejvíce citovaný článek - PubMed ID 14500403
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
- MeSH
- dítě MeSH
- dospělí MeSH
- feochromocytom * genetika terapie diagnóza MeSH
- lidé MeSH
- nádory nadledvin * genetika terapie diagnóza MeSH
- paragangliom * genetika terapie MeSH
- sukcinátdehydrogenasa genetika MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
- přehledy MeSH
- Názvy látek
- SDHB protein, human MeSH Prohlížeč
- sukcinátdehydrogenasa MeSH
Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.
- Klíčová slova
- AMPK, CP: Cancer, CP: Metabolism, Cdk5, PRKAG2, SDHB, Warburg effect, cancer bioenergetics, neuroendocrine tumor, p53, pheochromocytoma, senescence,
- MeSH
- adenylátkinasa * metabolismus MeSH
- cyklin-dependentní kinasa 5 metabolismus MeSH
- energetický metabolismus MeSH
- fosforylace MeSH
- kinasa 3 glykogensynthasy metabolismus MeSH
- myši MeSH
- neuroendokrinní karcinom * MeSH
- sukcináty MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adenylátkinasa * MeSH
- cyklin-dependentní kinasa 5 MeSH
- kinasa 3 glykogensynthasy MeSH
- sukcináty MeSH
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 "tumor enriched" proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.
- Klíčová slova
- PSMA, Pitchfork, integral membrane proteins, mass spectrometry, membrane proteomics, neuroendocrine cancer, paraganglioma, pheochromocytoma, theranostics,
- MeSH
- antigeny povrchové genetika MeSH
- feochromocytom diagnóza genetika MeSH
- glutamátkarboxypeptidasa II genetika MeSH
- lidé MeSH
- nádory nadledvin diagnóza genetika MeSH
- paragangliom diagnóza genetika MeSH
- proteom genetika MeSH
- teranostická nanomedicína MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- proteom MeSH
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
- MeSH
- buněčná diferenciace genetika MeSH
- energetický metabolismus * MeSH
- lidé MeSH
- mitochondriální geny * MeSH
- mitochondrie genetika metabolismus MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- nádory genetika metabolismus patologie MeSH
- progrese nemoci MeSH
- regulace genové exprese u nádorů MeSH
- tumor supresorové geny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Multiple head and neck paragangliomas (HNPGLs) are neuroendocrine tumors of a mostly benign nature that can be associated with a syndrome, precipitated by the presence of a germline mutation. Familial forms of the disease are usually seen with mutations of SDHx genes, especially the SDHD gene. SDHB mutations are predisposed to malignant tumors. We found 6 patients with multiple tumors amongst 30 patients with HNPGLs during the period of 2016 to 2021. We discuss the phenotypic and genetic patterns in our patients with multiple HNPGLs and explore the management possibilities related to the disease. Fifty percent of our patients had incidental findings of HNPGLs. Twenty-one biochemically silent tumors were found. Four patients had germline mutations, and only one had a positive family history. Three out of five underwent surgery without permanent complications. Preventative measures (genetic counselling and tumor surveillance) represent the gold standard in effectively controlling the disease in index patients and their relatives. In terms of treatment, apart from surgical and radiotherapeutic interventions, new therapeutic measures such as gene targeted therapy have contributed very sparsely. With the lack of standardized protocols, management of patients with multiple HNPGLs still remains very challenging, especially in those with sporadic or malignant forms of the disease.
- Klíčová slova
- HNPGL, SDHB gene, SDHD gene, carotid body tumors, genetic counselling, germline mutation, incidentalomas, malignant paragangliomas,
- Publikační typ
- časopisecké články MeSH
Head and neck paragangliomas Paragangliomas and pheochromocytomas are rare, mostly benign neuroendocrine tumors, which are embryologically derived from neural crest cells of the autonomic nervous system. Paragangliomas are essentially the extra-adrenal counterparts of pheochromocytomas. As such this family of tumors can be subdivided into head and neck paragangliomas, pheochromocytomas and thoracic and abdominal extra-adrenal paragangliomas. Ten out of fifteen genes that contribute to the development of paragangliomas are more susceptible to the development of head and neck paragangliomas when mutated. Gene expression profiling revealed that pheochromocytomas and paragangliomas can be classified into two main clusters (C1 and C2) based on transcriptomes. These groups were defined according to their mutational status and as such strongly associated with specific tumorigenic pathways. The influence of the main genetic drivers on the somatic molecular phenotype was shown by DNA methylation and miRNA profiling. Certain subunits of succinate dehydrogenase (SDHx), von Hippel-Lindau (VHL) and transmembrane protein 127 (TMEM127) still have the highest impact on development of head and neck paragangliomas. The link between RAS proteins and the formation of pheochromocytoma and paragangliomas is clear due to the effect of receptor tyrosine-protein kinase (RET) and neurofibromatosis type 1 (NF1) in RAS signaling and recent discovery of the role of HRAS. The functions of MYC-associated factor X (MAX) and prolyl hydroxylase 2 (PHD2) mutations in the contribution to the pathogenesis of paragangliomas still remain unclear. Ongoing studies give us insight into the incidence of germline and somatic mutations, thus offering guidelines to early detection. Furthermore, these also show the risk of mistakenly assuming sporadic cases in the absence of definitive family history in head and neck paragangliomas.
Warburg's metabolic hypothesis is based on the assumption that a cancer cell's respiration must be under attack, leading to its damage, in order to obtain increased glycolysis. Although this may not apply to all cancers, there is some evidence proving that primarily abnormally functioning mitochondrial complexes are indeed related to cancer development. Thus, mutations in complex II (succinate dehydrogenase (SDH)) lead to the formation of pheochromocytoma (PHEO)/paraganglioma (PGL). Mutations in one of the SDH genes (SDHx mutations) lead to succinate accumulation associated with very low fumarate levels, increased glutaminolysis, the generation of reactive oxygen species, and pseudohypoxia. This results in significant changes in signaling pathways (many of them dependent on the stabilization of hypoxia-inducible factor), including oxidative phosphorylation, glycolysis, specific expression profiles, as well as genomic instability and increased mutability resulting in tumor development. Although there is currently no very effective therapy for SDHx-related metastatic PHEOs/PGLs, targeting their fundamental metabolic abnormalities may provide a unique opportunity for the development of novel and more effective forms of therapy for these tumors.
- Klíčová slova
- SDHx, Warburg effect, gastrointestinal stromal tumor, glycolysis, hypoxia, paraganglioma, pheochromocytoma, pseudohypoxia, reactive oxygen species, renal cell carcinoma, succinate dehydrogenase,
- MeSH
- feochromocytom genetika metabolismus MeSH
- fyziologie buňky MeSH
- glykolýza MeSH
- lidé MeSH
- mutace genetika MeSH
- nádory nadledvin genetika metabolismus MeSH
- paragangliom genetika metabolismus MeSH
- sukcinátdehydrogenasa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- sukcinátdehydrogenasa MeSH