Nejvíce citovaný článek - PubMed ID 14506303
INTRODUCTION: Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. METHODS: In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. RESULTS AND DISCUSSION: Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
- Klíčová slova
- Myotis bat species, adaptive antifungal immunity, antibody prevalence, disease severity, emerging wildlife infection, indirect ELISA,
- MeSH
- Ascomycota MeSH
- Chiroptera * MeSH
- kožní nemoci * MeSH
- mykózy * epidemiologie veterinární MeSH
- séroepidemiologické studie MeSH
- syndrom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.
- Klíčová slova
- Chiroptera (bats), daily torpor, hibernation, in vitro model, macrophage biology, phagocytic activity, temperature-dependent proliferation,
- Publikační typ
- časopisecké články MeSH
Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid-base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid-base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.
- Klíčová slova
- Babesia vesperuginis, Chiroptera, Schizotrypanum, Trypanosoma dionisii, Trypanosoma vespertilionis, acid–base balance, blood chemistry, haematology,
- Publikační typ
- časopisecké články MeSH
Diclofenac is a drug commonly used in human and veterinary medicine for the treatment of diseases associated with inflammation and pain. Medicinal products enter waste and surface waters on an everyday basis and contaminate the aquatic environment. Fish are therefore permanently exposed to these chemicals dissolved in their aquatic environment. To simulate variable environmental conditions, the aim of our study was to examine adverse effects of diclofenac under different temperatures of cell incubation (18, 21, 24, 27 and 30 °C). Cyto-toxic and -static effects of diclofenac in concentrations of 0.001 mcg/ml, 0.01 microg/ml, 0.1 mcg/ml, 1 mcg/ml, 10 mcg/ml and 100 mcg/ml for the carp (Cyprinuscarpio) cultured leukocytes were quantified using detection of lactate dehydrogenase released from damaged cells. Overall DCF cytotoxicity was relatively low and its impact was pronounced at higher temperature and DCF concentration. Cells growth inhibition is changing more rapidly but it is high mainly at the highest concentration from low temperature. DNA fragmentation was not detected in tested leukocyte cell line. CYP450 increased diclofenac cytotoxicity only at the highest concentration but at incubation temperatures 18 and 27 °C. Leukocyte viability is essential for immune functions and any change can lead to reduction of resistance against pathogens, mainly in cold year seasons, when the immune system is naturally suppressed.
- MeSH
- antiflogistika nesteroidní toxicita MeSH
- diklofenak toxicita MeSH
- kapři imunologie metabolismus MeSH
- kultivované buňky MeSH
- leukocyty účinky léků imunologie metabolismus patologie MeSH
- proliferace buněk účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- diklofenak MeSH
The greater mouse-eared bat (Myotis myotis) is a flagship species for the protection of hibernation and summer maternity roosts in the Western Palearctic region. A range of pathogenic agents is known to put pressure on populations, including the white-nose syndrome fungus, for which the species shows the highest prevalence and infection intensity of all European bat species. Here, we perform analysis of blood parameters characteristic for the species during its natural annual life cycle in order to establish reference values. Despite sexual dimorphism and some univariate differences, the overall multivariate pattern suggests low seasonal variation with homeostatic mechanisms effectively regulating haematology and blood biochemistry ranges. Overall, the species displayed a high haematocrit and haemoglobin content and high concentration of urea, while blood glucose levels in swarming and hibernating bats ranged from hypo- to normoglycaemic. Unlike blood pH, concentrations of electrolytes were wide ranging. To conclude, baseline data for blood physiology are a useful tool for providing suitable medical care in rescue centres, for studying population health in bats adapting to environmental change, and for understanding bat responses to stressors of conservation and/or zoonotic importance.
- MeSH
- Chiroptera krev fyziologie MeSH
- hematokrit normy MeSH
- hematologické testy normy MeSH
- hibernace MeSH
- podnebí MeSH
- referenční hodnoty MeSH
- roční období MeSH
- sentinelové organismy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida epidemiologie MeSH
BACKGROUND: Emergence of both viral zoonoses from bats and diseases that threaten bat populations has highlighted the necessity for greater insights into the functioning of the bat immune system. Particularly when considering hibernating temperate bat species, it is important to understand the seasonal dynamics associated with immune response. Body temperature is one of the factors that modulates immune functions and defence mechanisms against pathogenic agents in vertebrates. To better understand innate immunity mediated by phagocytes in bats, we measured respiratory burst and haematology and blood chemistry parameters in heterothermic greater mouse-eared bats (Myotis myotis) and noctules (Nyctalus noctula) and homeothermic laboratory mice (Mus musculus). RESULTS: Bats displayed similar electrolyte levels and time-related parameters of phagocyte activity, but differed in blood profile parameters related to metabolism and red blood cell count. Greater mouse-eared bats differed from mice in all phagocyte activity parameters and had the lowest phagocytic activity overall, while noctules had the same quantitative phagocytic values as mice. Homeothermic mice were clustered separately in a high phagocyte activity group, while both heterothermic bat species were mixed in two lower phagocyte activity clusters. Stepwise regression identified glucose, white blood cell count, haemoglobin, total dissolved carbon dioxide and chloride variables as the best predictors of phagocyte activity. White blood cell counts, representing phagocyte numbers available for respiratory burst, were the best predictors of both time-related and quantitative parameters of phagocyte activity. Haemoglobin, as a proxy variable for oxygen available for uptake by phagocytes, was important for the onset of phagocytosis. CONCLUSIONS: Our comparative data indicate that phagocyte activity reflects the physiological state and blood metabolic and cellular characteristics of homeothermic and heterothermic mammals. However, further studies elucidating trade-offs between immune defence, seasonal lifestyle physiology, hibernation behaviour, roosting ecology and geographic patterns of immunity of heterothermic bat species will be necessary. An improved understanding of bat immune responses will have positive ramifications for wildlife and conservation medicine.
- Klíčová slova
- Bats, Blood, Innate immunity, Phagocytosis, Respiratory burst, Torpor,
- MeSH
- biochemická analýza krve MeSH
- Chiroptera krev imunologie MeSH
- chování zvířat fyziologie MeSH
- fagocyty imunologie MeSH
- počet erytrocytů MeSH
- tělesná teplota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH