Nejvíce citovaný článek - PubMed ID 14691943
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
- MeSH
- DNA chemie MeSH
- katalýza MeSH
- konformace nukleové kyseliny * MeSH
- počítačová simulace MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.
- MeSH
- hepatitida D virologie MeSH
- hořčík chemie MeSH
- katalytická doména MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- lidé MeSH
- molekulární modely MeSH
- RNA katalytická chemie MeSH
- RNA virová chemie MeSH
- termodynamika MeSH
- virus hepatitidy delta chemie enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hairpin ribozyme MeSH Prohlížeč
- hořčík MeSH
- RNA katalytická MeSH
- RNA virová MeSH
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.
- Klíčová slova
- conformational change, molecular dynamics simulation, small ribozyme, steady-state FRET, time-resolved FRET,
- MeSH
- katalytická doména MeSH
- katalýza MeSH
- kinetika MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- RNA katalytická chemie MeSH
- RNA malá jaderná chemie metabolismus MeSH
- RNA virová chemie MeSH
- simulace molekulární dynamiky MeSH
- štěpení RNA MeSH
- virus hepatitidy delta enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hammerhead ribozyme MeSH Prohlížeč
- RNA katalytická MeSH
- RNA malá jaderná MeSH
- RNA virová MeSH
- U1 small nuclear RNA MeSH Prohlížeč
The hairpin ribozyme is a prominent member of small ribozymes since it does not require metal ions to achieve catalysis. Guanine 8 (G8) and adenine 38 (A38) have been identified as key participants in self-cleavage and -ligation. We have carried out hybrid quantum-mechanical/molecular mechanical (QM/MM) calculations to evaluate the energy along several putative reaction pathways. The error of our DFT description of the QM region was tested and shown to be ~1 kcal/mol. We find that self-cleavage of the hairpin ribozyme may follow several competing microscopic reaction mechanisms, all with calculated activation barriers in good agreement with those from experiment (20-21 kcal/mol). The initial nucleophilic attack of the A-1(2'-OH) group on the scissile phosphate is predicted to be rate-limiting in all these mechanisms. An unprotonated G8(-) (together with A38H(+)) yields a feasible activation barrier (20.4 kcal/mol). Proton transfer to a nonbridging phosphate oxygen also leads to feasible reaction pathways. Finally, our calculations consider thio-substitutions of one or both nonbridging oxygens of the scissile phosphate and predict that they have only a negligible effect on the reaction barrier, as observed experimentally.
- MeSH
- katalýza MeSH
- kvantová teorie * MeSH
- kyslík chemie MeSH
- protony MeSH
- RNA katalytická chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hairpin ribozyme MeSH Prohlížeč
- kyslík MeSH
- protony MeSH
- RNA katalytická MeSH
The glmS catalytic riboswitch is part of the 5'-untranslated region of mRNAs encoding glucosamine-6-phosphate (GlcN6P) synthetase (glmS) in numerous gram-positive bacteria. Binding of the cofactor GlcN6P induces site-specific self-cleavage of the RNA. However, the detailed reaction mechanism as well as the protonation state of the glmS reactive form still remains elusive. To probe the dominant protonation states of key active site residues, we carried out explicit solvent molecular dynamic simulations involving various protonation states of three crucial active site moieties observed in the available crystal structures: (i) guanine G40 (following the Thermoanaerobacter tengcongensis numbering), (ii) the GlcN6P amino/ammonium group, and (iii) the GlcN6P phosphate moiety. We found that a deprotonated G40(-) seems incompatible with the observed glmS active site architecture. Our data suggest that the canonical form of G40 plays a structural role by stabilizing an in-line attack conformation of the cleavage site A-1(2'-OH) nucleophile, rather than a more direct chemical role. In addition, we observe weakened cofactor binding upon protonation of the GlcN6P phosphate moiety, which explains the experimentally observed increase in K(m) with decreasing pH. Finally, we discuss a possible role of cofactor binding and its interaction with the G65 and G1 purines in structural stabilization of the A-1(2'-OH) in-line attack conformation. On the basis of the identified dominant protonation state of the reaction precursor, we propose a hypothesis of the self-cleavage mechanism in which A-1(2'-OH) is activated as a nucleophile by the G1(pro-R(p)) nonbridging oxygen of the scissile phosphate, whereas the ammonium group of GlcN6P acts as the general acid protonating the G1(O5') leaving group.
- MeSH
- glukosa-6-fosfát analogy a deriváty metabolismus MeSH
- glukosamin analogy a deriváty metabolismus MeSH
- glutaminfruktosa-6-fosfáttransaminasa (izomerizující) genetika MeSH
- katalytická doména * MeSH
- koenzymy metabolismus MeSH
- konformace nukleové kyseliny MeSH
- molekulární sekvence - údaje MeSH
- protony * MeSH
- RNA katalytická chemie genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- simulace molekulární dynamiky * MeSH
- Thermoanaerobacter enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glucosamine 6-phosphate MeSH Prohlížeč
- glukosa-6-fosfát MeSH
- glukosamin MeSH
- glutaminfruktosa-6-fosfáttransaminasa (izomerizující) MeSH
- koenzymy MeSH
- protony * MeSH
- RNA katalytická MeSH
The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their exact role in catalysis remains disputed. To gain insight into dynamics in the active site of a minimal self-cleaving hairpin ribozyme, we have performed extensive classical, explicit-solvent molecular dynamics (MD) simulations on time scales of 50-150 ns. Starting from the available X-ray crystal structures, we investigated the structural impact of the protonation states of G8 and A38, and the inactivating A-1(2'-methoxy) substitution employed in crystallography. Our simulations reveal that a canonical G8 agrees well with the crystal structures while a deprotonated G8 profoundly distorts the active site. Thus MD simulations do not support a straightforward participation of the deprotonated G8 in catalysis. By comparison, the G8 enol tautomer is structurally well tolerated, causing only local rearrangements in the active site. Furthermore, a protonated A38H(+) is more consistent with the crystallography data than a canonical A38. The simulations thus support the notion that A38H(+) is the dominant form in the crystals, grown at pH 6. In most simulations, the canonical A38 departs from the scissile phosphate and substantially perturbs the structures of the active site and S-turn. Yet, we occasionally also observe formation of a stable A-1(2'-OH)...A38(N1) hydrogen bond, which documents the ability of the ribozyme to form this hydrogen bond, consistent with a potential role of A38 as general base catalyst. The presence of this hydrogen bond is, however, incompatible with the expected in-line attack angle necessary for self-cleavage, requiring a rapid transition of the deprotonated 2'-oxyanion to a position more favorable for in-line attack after proton transfer from A-1(2'-OH) to A38(N1). The simulations revealed a potential force field artifact, occasional but irreversible formation of "ladder-like", underwound A-RNA structure in one of the external helices. Although it does not affect the catalytic center of the hairpin ribozyme, further studies are under way to better assess possible influence of such force field behavior on long RNA simulations.
- MeSH
- adenin chemie MeSH
- guanin chemie MeSH
- katalytická doména MeSH
- katalýza MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- protony * MeSH
- RNA katalytická chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenin MeSH
- guanin MeSH
- hairpin ribozyme MeSH Prohlížeč
- protony * MeSH
- RNA katalytická MeSH