Most cited article - PubMed ID 15241943
Half-inhibition concentrations of new cholinesterase inhibitors
On the basis of previous reports, novel 2-benzoylhydrazine-1-carboxamides were designed as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Inhibitors of these enzymes have many clinical applications. 2-(Substituted benzoyl)hydrazine-1-carboxamides decorated with N-methyl or tridecyl were prepared with three methods from commercially available or self-prepared hydrazides and isocyanates. For methyl derivatives, N-succinimidyl N-methylcarbamate was used or methyl isocyanate was prepared via Curtius rearrangement. Tridecyl isocyanate was synthesized again via Curtius rearrangement or from triphosgene and tridecylamine. The compounds were evaluated for the inhibition of AChE and BChE using Ellman's spectrophotometric method. Most of the derivatives showed the dual inhibition of both enzymes with IC50 values of 44-100 µM for AChE and from 22 µM for BChE. In general, the carboxamides inhibited AChE more strongly. A large number of the compounds showed better or quite comparable inhibition of cholinesterases in vitro than that of the drug rivastigmine. Molecular docking was performed to investigate the possible conformation of the compounds and their interactions with target enzymes. In both AChE and BChE, the compounds occupied the enzyme active cavity, and, especially in the case of BChE, the compounds were placed in close proximity to the catalytic triad.
- Keywords
- acetylcholinesterase, benzohydrazide, butyrylcholinesterase, enzyme inhibition, hydrazine-1-carboxamide, molecular docking,
- Publication type
- Journal Article MeSH
2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67-98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41-100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman's spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8-99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure-activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.
- Keywords
- 1,3,4-oxadiazole, 1,3,4-thiadiazole, acetylcholinesterase, butyrylcholinesterase, enzyme inhibition, molecular docking,
- Publication type
- Journal Article MeSH
A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.
- Keywords
- acetylcholinesterase, aminoguanidine, antimicrobial activity, butyrylcholinesterase, cytotoxicity, enzyme inhibition, hydrazones, molecular docking, salicylaldehydes,
- Publication type
- Journal Article MeSH
A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl (3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl {3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure-activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.
- Keywords
- 4-aminosalicylanilides, CoMSA, carbamate synthesis, cholinesterase inhibition, lipophilicity, molecular docking, similarity-activity landscape index,
- MeSH
- Acetylcholinesterase chemistry metabolism MeSH
- Principal Component Analysis MeSH
- Butyrylcholinesterase chemistry metabolism MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates pharmacology MeSH
- Aminosalicylic Acid chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Models, Molecular MeSH
- Cell Line, Tumor MeSH
- Drug Design MeSH
- Solvents MeSH
- Cluster Analysis MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation * MeSH
- THP-1 Cells MeSH
- Cell Survival MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Carbamates MeSH
- Aminosalicylic Acid MeSH
- Ligands MeSH
- Solvents MeSH
Based on the broad spectrum of biological activity of hydrazide-hydrazones, trifluoromethyl compounds, and clinical usage of cholinesterase inhibitors, we investigated hydrazones obtained from 4-(trifluoromethyl)benzohydrazide and various benzaldehydes or aliphatic ketones as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). They were evaluated using Ellman's spectrophotometric method. The hydrazide-hydrazones produced a dual inhibition of both cholinesterase enzymes with IC50 values of 46.8-137.7 µM and 19.1-881.1 µM for AChE and BuChE, respectively. The majority of the compounds were stronger inhibitors of AChE; four of them (2-bromobenzaldehyde, 3-(trifluoromethyl)benzaldehyde, cyclohexanone, and camphor-based 2o, 2p, 3c, and 3d, respectively) produced a balanced inhibition of the enzymes and only 2-chloro/trifluoromethyl benzylidene derivatives 2d and 2q were found to be more potent inhibitors of BuChE. 4-(Trifluoromethyl)-N'-[4-(trifluoromethyl)benzylidene]benzohydrazide 2l produced the strongest inhibition of AChE via mixed-type inhibition determined experimentally. Structure-activity relationships were identified. The compounds fit physicochemical space for targeting central nervous systems with no apparent cytotoxicity for eukaryotic cell line together. The study provides new insights into this CF3-hydrazide-hydrazone scaffold.
- Keywords
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, butyrylcholinesterase inhibition, enzyme inhibition, hydrazides, hydrazones,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Butyrylcholinesterase metabolism MeSH
- Central Nervous System drug effects MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Blood-Brain Barrier drug effects pathology MeSH
- Hydrazines chemistry MeSH
- Hydrazones chemistry pharmacology MeSH
- Kinetics MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Hydrazines MeSH
- Hydrazones MeSH
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
- Keywords
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, antimycobacterial activity, butyrylcholinesterase inhibition, cytostatic properties, hydrazides,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Anti-Infective Agents * chemical synthesis chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors * chemical synthesis chemistry pharmacology MeSH
- GPI-Linked Proteins metabolism MeSH
- Imidazoles * chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Mycobacterium avium growth & development MeSH
- Mycobacterium kansasii growth & development MeSH
- Mycobacterium tuberculosis growth & development MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- ACHE protein, human MeSH Browser
- Anti-Infective Agents * MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors * MeSH
- GPI-Linked Proteins MeSH
- Imidazoles * MeSH
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
- Keywords
- acetylcholinesterase, benzamides, butyrylcholinesterase, enzyme inhibition, esters, in vitro inhibition, phosphorus derivatives, salicylanilides,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Benzamides chemistry pharmacology MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Electrophorus MeSH
- Esters chemistry pharmacology MeSH
- Phosphorus chemistry MeSH
- Inhibitory Concentration 50 MeSH
- Horses MeSH
- Molecular Structure MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Benzamides MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Esters MeSH
- Phosphorus MeSH
A set of 25 novel, silicon-based carbamate derivatives as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors was synthesized and characterized by their in vitro inhibition profiles and the selectivity indexes (SIs). The prepared compounds were also tested for their inhibition potential on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. In fact, some of the newly prepared molecules revealed comparable or even better inhibitory activities compared to the marketed drugs (rivastigmine or galanthamine) and commercially applied pesticide Diuron®, respectively. Generally, most compounds exhibited better inhibition potency towards AChE; however, a wider activity span was observed for BChE. Notably, benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(2-hydroxyphenyl)carbamoyl]ethyl]-carbamate (2) and benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(3-hydroxyphenyl)carbamoyl]ethyl]-carbamate (3) were characterized by fairly high selective indexes. Specifically, compound 2 was prescribed with the lowest IC50 value that corresponds quite well with galanthamine inhibition activity, while the inhibitory profiles of molecules 3 and benzyl-N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(4-hydroxyphenyl)carbamoyl]ethyl]carbamate (4) are in line with rivastigmine activity. Moreover, a structure-activity relationship (SAR)-driven similarity evaluation of the physicochemical properties for the carbamates examined appeared to have foreseen the activity cliffs using a similarity-activity landscape index for BChE inhibitory response values. The 'indirect' ligand-based and 'direct' protein-mediated in silico approaches were applied to specify electronic/steric/lipophilic factors that are potentially valid for quantitative (Q)SAR modeling of the carbamate analogues. The stochastic model validation was used to generate an 'average' 3D-QSAR pharmacophore pattern. Finally, the target-oriented molecular docking was employed to (re)arrange the spatial distribution of the ligand property space for BChE and photosystem II (PSII).
- Keywords
- CoMSA, IVE-PLS, in vitro cholinesterase inhibition, molecular docking, silicon-based carbamates, similarity-activity landscape index,
- MeSH
- Butyrylcholinesterase MeSH
- Chloroplasts MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Photosystem II Protein Complex MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates chemistry pharmacology MeSH
- Silicon chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Docking Simulation MeSH
- Spinacia oleracea MeSH
- THP-1 Cells drug effects MeSH
- Electron Transport drug effects MeSH
- Binding Sites MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Photosystem II Protein Complex MeSH
- Carbamates MeSH
- Silicon MeSH
- Ligands MeSH
A series of new benzene-based derivatives was designed, synthesized and comprehensively characterized. All of the tested compounds were evaluated for their in vitro ability to potentially inhibit the acetyl- and butyrylcholinesterase enzymes. The selectivity index of individual molecules to cholinesterases was also determined. Generally, the inhibitory potency was stronger against butyryl- compared to acetylcholinesterase; however, some of the compounds showed a promising inhibition of both enzymes. In fact, two compounds (23, benzyl ethyl(1-oxo-1-phenylpropan-2-yl)carbamate and 28, benzyl (1-(3-chlorophenyl)-1-oxopropan-2-yl) (methyl)carbamate) had a very high selectivity index, while the second one (28) reached the lowest inhibitory concentration IC50 value, which corresponds quite well with galanthamine. Moreover, comparative receptor-independent and receptor-dependent structure⁻activity studies were conducted to explain the observed variations in inhibiting the potential of the investigated carbamate series. The principal objective of the ligand-based study was to comparatively analyze the molecular surface to gain insight into the electronic and/or steric factors that govern the ability to inhibit enzyme activities. The spatial distribution of potentially important steric and electrostatic factors was determined using the probability-guided pharmacophore mapping procedure, which is based on the iterative variable elimination method. Additionally, planar and spatial maps of the host⁻target interactions were created for all of the active compounds and compared with the drug molecules using the docking methodology.
- Keywords
- CoMSA, IVE-PLS, benzene-based carbamates, in vitro cholinesterase inhibition, molecular docking study,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Principal Component Analysis MeSH
- Benzene chemical synthesis chemistry pharmacology MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Electrophorus MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates chemical synthesis chemistry pharmacology MeSH
- Horses MeSH
- Ligands MeSH
- Probability MeSH
- Drug Design MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Benzene MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Carbamates MeSH
- Ligands MeSH
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure-inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3'-/4'-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
- Keywords
- CoMSA, IVE-PLS, carbamates, in vitro cholinesterase inhibition, in vitro cytotoxicity assay, molecular docking study, proline,
- MeSH
- Acetylcholinesterase chemistry MeSH
- Butyrylcholinesterase chemistry MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Carbamates chemical synthesis chemistry pharmacology MeSH
- Catalytic Domain MeSH
- Molecular Conformation MeSH
- Proline * chemistry MeSH
- Molecular Docking Simulation MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Carbamates MeSH
- Proline * MeSH