Nejvíce citovaný článek - PubMed ID 15340055
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
- Klíčová slova
- adverse outcome pathways, chemical toxicity, epigenetics, mixtures, multiple stress,
- MeSH
- ekosystém MeSH
- expozom * MeSH
- hodnocení rizik MeSH
- lidé MeSH
- těhotenství MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
- Klíčová slova
- CYP450, PXR, cancer, gene regulation, inflammation, marine origin, natural compound,
- MeSH
- biologické přípravky chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- Porifera chemie MeSH
- pregnanový X receptor metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- Urochordata chemie MeSH
- vodní organismy chemie MeSH
- vyvíjení léků * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- ligandy MeSH
- pregnanový X receptor MeSH
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
- Klíčová slova
- PXR, cross-talk, gene regulation, metabolism, nuclear receptor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pregnane X receptor (PXR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and is activated by a huge variety of endobiotics and xenobiotics, including many clinical drugs. PXR plays key roles not only as a xenosensor in the regulation of both major phase I and II drug metabolism and transporters but also as a physiological sensor in the modulation of bile acid and cholesterol metabolism, glucose and lipid metabolism, and bone and endocrine homeostasis. Post-translational modifications such as phosphorylation have been shown to modulate the activity of many NRs, including PXR, and constitute an important mechanism for crosstalk between signaling pathways and regulation of genes involved in both xenobiotic and endobiotic metabolism. In addition, microRNAs have recently been shown to constitute another level of PXR activity regulation. The objective of this review is to comprehensively summarize current understanding of post-transcriptional and post-translational modifications of PXR in regulation of xenobiotic-metabolizing cytochrome P450 (CYP) genes, mainly in hepatic tissue. We also discuss the importance of PXR in crosstalk with cell signaling pathways, which at the level of transcription modify expression of genes associated with some physiological and pathological stages in the organs. Finally, we indicate that these PXR modifications may have important impacts on CYP-mediated biotransformation of some clinically used drugs.
- MeSH
- biotransformace MeSH
- enzymová indukce účinky léků MeSH
- interakční proteinové domény a motivy MeSH
- játra účinky léků enzymologie metabolismus MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- posttranskripční úpravy RNA * účinky léků MeSH
- posttranslační úpravy proteinů * účinky léků MeSH
- pregnanový X receptor MeSH
- steroidní receptory chemie genetika metabolismus MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- xenobiotika metabolismus farmakokinetika toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- pregnanový X receptor MeSH
- steroidní receptory MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika MeSH